{"title":"Temporal Evolution of Depolarization and Magnetic Field of Fast Radio Burst 20201124A","authors":"Wan-Jin Lu, Zhen-Yin Zhao, F. Y. Wang, Z. G. Dai","doi":"10.3847/2041-8213/acf8cb","DOIUrl":null,"url":null,"abstract":"Abstract Fast radio bursts (FRBs) are energetic millisecond phenomena in the radio band. Polarimetric studies of repeating FRBs indicate that many of these sources occupy extreme and complex magnetoionized environments. Recently, a frequency-dependent depolarization has been discovered in several repeating FRBs. However, the temporal evolution of polarization properties is limited by the burst rate and observational cadence of telescopes. In this Letter, the temporal evolution of depolarization in repeating FRB 20201124A is explored. Using the simultaneous variation of rotation measure and dispersion measure, we also measure the strength of a magnetic field parallel to the line of sight. The strength ranges from a few μ G to 10 3 μ G. In addition, we find that the evolution of depolarization and magnetic field traces the evolution of rotation measure. Our result supports that the variation of depolarization, rotation measure, and the magnetic field are determined by the same complex magnetoionized screen surrounding the FRB source. The derived properties of the screen are consistent with the wind and the decretion disk of a massive star.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"209 1","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acf8cb","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fast radio bursts (FRBs) are energetic millisecond phenomena in the radio band. Polarimetric studies of repeating FRBs indicate that many of these sources occupy extreme and complex magnetoionized environments. Recently, a frequency-dependent depolarization has been discovered in several repeating FRBs. However, the temporal evolution of polarization properties is limited by the burst rate and observational cadence of telescopes. In this Letter, the temporal evolution of depolarization in repeating FRB 20201124A is explored. Using the simultaneous variation of rotation measure and dispersion measure, we also measure the strength of a magnetic field parallel to the line of sight. The strength ranges from a few μ G to 10 3 μ G. In addition, we find that the evolution of depolarization and magnetic field traces the evolution of rotation measure. Our result supports that the variation of depolarization, rotation measure, and the magnetic field are determined by the same complex magnetoionized screen surrounding the FRB source. The derived properties of the screen are consistent with the wind and the decretion disk of a massive star.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.