Protoporphyrinogen oxidase inhibitors discovered by Artificial Intelligence platform

IF 1.8 4区 农林科学 Q2 PLANT SCIENCES
Abigail L. Barker, Yosef Geva, Eyal Simonovsky, Netta Shemesh, Yael Phillip, Ifat Shub, Franck E. Dayan
{"title":"Protoporphyrinogen oxidase inhibitors discovered by Artificial Intelligence platform","authors":"Abigail L. Barker, Yosef Geva, Eyal Simonovsky, Netta Shemesh, Yael Phillip, Ifat Shub, Franck E. Dayan","doi":"10.51694/advweedsci/2023;41:00011","DOIUrl":null,"url":null,"abstract":"Background Weed control is essential in modern agriculture, though it has become more difficult with the emergence of resistance to most current herbicides and the slow registration process for new compounds. Objective Identify herbicide candidates using an innovative artificial intelligence algorithm that takes into effect biological parameters with the goal of reducing research and development time of new herbicides. Results We describe the discovery of 4-chloro-2-pentenamides as novel inhibitors of protoporphyrinogen oxidase (PPO), a known herbicide target site, by [...]","PeriodicalId":29845,"journal":{"name":"Advances in Weed Science","volume":"27 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Weed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51694/advweedsci/2023;41:00011","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background Weed control is essential in modern agriculture, though it has become more difficult with the emergence of resistance to most current herbicides and the slow registration process for new compounds. Objective Identify herbicide candidates using an innovative artificial intelligence algorithm that takes into effect biological parameters with the goal of reducing research and development time of new herbicides. Results We describe the discovery of 4-chloro-2-pentenamides as novel inhibitors of protoporphyrinogen oxidase (PPO), a known herbicide target site, by [...]
人工智能平台发现的原卟啉原氧化酶抑制剂
杂草控制在现代农业中是必不可少的,尽管随着对大多数现有除草剂的抗性的出现和新化合物登记过程缓慢,杂草控制变得更加困难。目的利用一种考虑生物参数的创新人工智能算法识别候选除草剂,以缩短新除草剂的研发时间。结果我们描述了4-氯-2-五烯酰胺作为原卟啉原氧化酶(PPO)的新型抑制剂的发现,PPO是已知的除草剂靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Weed Science
Advances in Weed Science PLANT SCIENCES-
CiteScore
2.10
自引率
42.90%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信