K. Pomorski, A. Dobrowolski, B. Nerlo-Pomorska, M. Warda, A. Zdeb, J. Bartel, H. Molique, C. Schmitt, Z.G. Xiao, Y.J. Chen, L.L. Liu
{"title":"Fission Fragment Mass and Kinetic Energy Yields of Fermium Isotopes","authors":"K. Pomorski, A. Dobrowolski, B. Nerlo-Pomorska, M. Warda, A. Zdeb, J. Bartel, H. Molique, C. Schmitt, Z.G. Xiao, Y.J. Chen, L.L. Liu","doi":"10.5506/aphyspolb.54.9-a2","DOIUrl":null,"url":null,"abstract":"A rapidly converging 4-dimensional Fourier shape parametrization is used to model the fission process of heavy nuclei. Potential energy landscapes are computed within the macroscopic-microscopic approach, on top of which the multi-dimensional Langevin equation is solved to describe the fission dynamics. Charge equilibration at scission and de-excitation by neutron evaporation of the primary fragments after scission is investigated. The model describes various observables, including fission-fragment mass, charge, and kinetic energy yields, as well as post-scission neutron multiplicities and, most importantly, their correlations, which are crucial to unravel the complexity of the fission process. The parameters of the dynamical model were tuned to reproduce experimental data obtained from thermal neutron-induced fission of $^{235}$U, which allows us to discuss the transition from asymmetric to symmetric fission along the Fm isotopic chain.","PeriodicalId":7060,"journal":{"name":"Acta Physica Polonica B","volume":"36 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5506/aphyspolb.54.9-a2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
A rapidly converging 4-dimensional Fourier shape parametrization is used to model the fission process of heavy nuclei. Potential energy landscapes are computed within the macroscopic-microscopic approach, on top of which the multi-dimensional Langevin equation is solved to describe the fission dynamics. Charge equilibration at scission and de-excitation by neutron evaporation of the primary fragments after scission is investigated. The model describes various observables, including fission-fragment mass, charge, and kinetic energy yields, as well as post-scission neutron multiplicities and, most importantly, their correlations, which are crucial to unravel the complexity of the fission process. The parameters of the dynamical model were tuned to reproduce experimental data obtained from thermal neutron-induced fission of $^{235}$U, which allows us to discuss the transition from asymmetric to symmetric fission along the Fm isotopic chain.
期刊介绍:
Acta Physica Polonica B covers the following areas of physics:
-General and Mathematical Physics-
Particle Physics and Field Theory-
Nuclear Physics-
Theory of Relativity and Astrophysics-
Statistical Physics