The moduli space of $S^1$-type zero loci for $\mathbb{Z}/2$-harmonic spinors in dimension $3$

IF 0.7 4区 数学 Q2 MATHEMATICS
Ryosuke Takahashi
{"title":"The moduli space of $S^1$-type zero loci for $\\mathbb{Z}/2$-harmonic spinors in dimension $3$","authors":"Ryosuke Takahashi","doi":"10.4310/cag.2023.v31.n1.a5","DOIUrl":null,"url":null,"abstract":"Let $M$ be a compact oriented 3-dimensional smooth manifold. In this paper, we will construct a moduli space consisting of the following date $\\{(\\Sigma, \\psi)\\}$ where $\\Sigma$ is a $C^1$-embedding $S^1$ curve in $M$, $\\psi$ is a $\\mathbb{Z}/2$-harmonic spinor vanishing only on $\\Sigma$ and $\\|\\psi\\|_{L^2_1}=1$. We will prove that this moduli space can be parametrized by the space $\\mathcal{X}=$ all Riemannian metrics on M locally as the kernel of a Fredholm operator.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"274 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n1.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

Let $M$ be a compact oriented 3-dimensional smooth manifold. In this paper, we will construct a moduli space consisting of the following date $\{(\Sigma, \psi)\}$ where $\Sigma$ is a $C^1$-embedding $S^1$ curve in $M$, $\psi$ is a $\mathbb{Z}/2$-harmonic spinor vanishing only on $\Sigma$ and $\|\psi\|_{L^2_1}=1$. We will prove that this moduli space can be parametrized by the space $\mathcal{X}=$ all Riemannian metrics on M locally as the kernel of a Fredholm operator.
$ $3维$ $ mathbb{Z}/2$-调和旋量$S^1$-型零轨迹的模空间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信