Quantization of Time Independent Damping Systems Using WKB Approximation

Ola A. Jarab’ah
{"title":"Quantization of Time Independent Damping Systems Using WKB Approximation","authors":"Ola A. Jarab’ah","doi":"10.4236/jamp.2023.119170","DOIUrl":null,"url":null,"abstract":"In this work time independent damping systems are studied using Lagrangian and Hamiltonian for time independent damping, which are present through the factor eλq. The Hamilton Jacobi equation is formulated to find the Hamilton Jacobi function S using separation of variables technique. We can form this function in compact form of two parts the first part as a function of coordinate q, and the second part as a function of time t. Finally, we find the ability of these systems to quantize through an illustrative example.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.119170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work time independent damping systems are studied using Lagrangian and Hamiltonian for time independent damping, which are present through the factor eλq. The Hamilton Jacobi equation is formulated to find the Hamilton Jacobi function S using separation of variables technique. We can form this function in compact form of two parts the first part as a function of coordinate q, and the second part as a function of time t. Finally, we find the ability of these systems to quantize through an illustrative example.
使用WKB近似的时间无关阻尼系统量化
本文用拉格朗日量和哈密顿量对时间无关阻尼系统进行了研究,时间无关阻尼是通过因子eλq表示的。利用分离变量技术,建立Hamilton Jacobi方程,求出Hamilton Jacobi函数S。我们可以将这个函数以两部分的紧凑形式形成,第一部分是坐标q的函数,第二部分是时间t的函数。最后,我们通过一个说明性的例子发现了这些系统的量化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信