Efficient Two-Way Coupled Analysis of Steady-State Particle-Laden Hypersonic Flows

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Andrew Hinkle, Serhat Hosder, Christopher Johnston
{"title":"Efficient Two-Way Coupled Analysis of Steady-State Particle-Laden Hypersonic Flows","authors":"Andrew Hinkle, Serhat Hosder, Christopher Johnston","doi":"10.2514/1.a35731","DOIUrl":null,"url":null,"abstract":"A direct solution approach for surface erosion in particle-laden hypersonic flows is extended for use in low-cost two-way coupled solutions of dilute gas-particle flows. The trajectory control volume method, which uses a sparse set of probe particles to predict surface erosion distributions on general vehicles, is reformulated for the solution of source terms by mean trajectory subdivision and computing a flux differencing. The approach is verified successfully against a boundary-layer solution and shown to agree well with experimental measurements. A representative Mars entry case, with conditions and geometry based on the ExoMars Schiaparelli capsule, is solved with the approach to study the impact of two-way coupling on surface heating and erosion. Results indicate that, for realistic loading conditions, heating is largely unmodified compared to one-way coupled results at peak heating trajectory conditions, and no measureable difference is observed in the surface erosion rate. At exaggerated loading conditions high enough to observe coupling effects, the worst-case collisional heating can increase heating by up to 60%.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"1 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A direct solution approach for surface erosion in particle-laden hypersonic flows is extended for use in low-cost two-way coupled solutions of dilute gas-particle flows. The trajectory control volume method, which uses a sparse set of probe particles to predict surface erosion distributions on general vehicles, is reformulated for the solution of source terms by mean trajectory subdivision and computing a flux differencing. The approach is verified successfully against a boundary-layer solution and shown to agree well with experimental measurements. A representative Mars entry case, with conditions and geometry based on the ExoMars Schiaparelli capsule, is solved with the approach to study the impact of two-way coupling on surface heating and erosion. Results indicate that, for realistic loading conditions, heating is largely unmodified compared to one-way coupled results at peak heating trajectory conditions, and no measureable difference is observed in the surface erosion rate. At exaggerated loading conditions high enough to observe coupling effects, the worst-case collisional heating can increase heating by up to 60%.
满载粒子的高超声速稳态流动的高效双向耦合分析
将载颗粒高超声速流中表面侵蚀的直接求解方法推广到稀气-颗粒流的低成本双向耦合求解中。利用稀疏的探测粒子集来预测一般车辆表面侵蚀分布的轨迹控制体积方法,通过平均轨迹细分和计算通量差分来求解源项。该方法在边界层解上得到了成功的验证,与实验测量结果吻合良好。基于ExoMars Schiaparelli太空舱的条件和几何结构,利用该方法研究了双向耦合对表面加热和侵蚀的影响,解决了具有代表性的火星进入案例。结果表明,在实际加载条件下,与加热轨迹峰值条件下的单向耦合结果相比,加热在很大程度上没有改变,并且表面侵蚀速率没有可测量的差异。在高到足以观察到耦合效应的夸张加载条件下,最坏情况下的碰撞加热可以使加热增加高达60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信