Attractive sets of periodic integrodifference equations under discretization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peter E. Kloeden, Christian Pötzsche
{"title":"Attractive sets of periodic integrodifference equations under discretization","authors":"Peter E. Kloeden, Christian Pötzsche","doi":"10.1080/10236198.2023.2262613","DOIUrl":null,"url":null,"abstract":"We consider periodic difference equations in infinite-dimensional Banach spaces possessing compact asymptotically stable set A. It is established that such A persists under spatial discretizations by means of projection methods as nearby closed and bounded uniformly asymptotically stable sets, which moreover converge to A in the Hausdorff metric for increasingly more accurate schemes. The proof is based on a Lyapunov function guaranteed by an ambient converse theorem and a pullback construction. As application serves integrodifference equations on spaces of continuous and p-integrable functions over a compact habitat.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2262613","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider periodic difference equations in infinite-dimensional Banach spaces possessing compact asymptotically stable set A. It is established that such A persists under spatial discretizations by means of projection methods as nearby closed and bounded uniformly asymptotically stable sets, which moreover converge to A in the Hausdorff metric for increasingly more accurate schemes. The proof is based on a Lyapunov function guaranteed by an ambient converse theorem and a pullback construction. As application serves integrodifference equations on spaces of continuous and p-integrable functions over a compact habitat.
离散化下周期积分差分方程的吸引集
考虑无限维Banach空间中具有紧的渐近稳定集A的周期差分方程,利用投影方法证明了在空间离散化下,A是邻近的闭有界一致渐近稳定集,并且在越来越精确的格式下收敛于Hausdorff度量中的A。该证明基于由环境逆定理和回拉构造保证的李雅普诺夫函数。作为在紧生境上连续函数和p可积函数空间上的积分差分方程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信