Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain

None Li Yao-Long, None Li Zhe, None Li Song-Yuan, None Zhang Ren-Liang
{"title":"Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain","authors":"None Li Yao-Long, None Li Zhe, None Li Song-Yuan, None Zhang Ren-Liang","doi":"10.7498/aps.72.20231230","DOIUrl":null,"url":null,"abstract":"The interlayer bonding of graphene is a modification method of graphene, which can change the mechanical and conductivity of graphene, but also affect its thermal properties. In this paper, the non-equilibrium molecular dynamics method is used to study the thermal conductivity of bilayer graphene nanoribbon which is local carbon sp<sup>3</sup> hybridization (covalent bond formed between layers) under different concentration and angle of interlayer Covalent bond chain and different tensile strain. The mechanism of the change of the thermal conductivity of bilayer graphene nanoribbon is analyzed through the density of phonon states. The results are as follows. The thermal conductivity of bilayer graphene nanoribbon decreases with the increase of the interlayer covalent bond concentration due to the intensification of phonon scattering and the reduction of phonon group velocities and effective phonon mean free path. Moreover, the decrease rate of thermal conductivity depends on the distribution angle of covalent bond chain. With the increase of interlayer covalent bond concentration, when the interlayer covalent bond chain is parallel to the direction of heat flow, the thermal conductivity decreases the slowest because the heat transfer channel along the heat flow direction is gradually affected; when the interlayer covalent bond chain is at an angle to the direction of heat flow, the thermal conductivity decreases more rapidly, and the larger the angle, the faster the thermal conductivity decreases. The rapid decline of thermal conductivity is due to the formation of interfacial thermal resistance at the interlayer covalent bond chain, where strong phonon-interface scattering occurs. In addition, it is found that the thermal conductivity of bilayer graphene nanoribbon with interlayer bonding will be further reduced by tensile strain due to the intensification of phonon scattering and the reduction of phonon group velocities. The results show that the thermal conductivity of bilayer graphene nanoribbon can be controlled by interlayer bonding and tensile strain. These conclusions are of great significance for the design and thermal control of graphene based nanodevices.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20231230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interlayer bonding of graphene is a modification method of graphene, which can change the mechanical and conductivity of graphene, but also affect its thermal properties. In this paper, the non-equilibrium molecular dynamics method is used to study the thermal conductivity of bilayer graphene nanoribbon which is local carbon sp3 hybridization (covalent bond formed between layers) under different concentration and angle of interlayer Covalent bond chain and different tensile strain. The mechanism of the change of the thermal conductivity of bilayer graphene nanoribbon is analyzed through the density of phonon states. The results are as follows. The thermal conductivity of bilayer graphene nanoribbon decreases with the increase of the interlayer covalent bond concentration due to the intensification of phonon scattering and the reduction of phonon group velocities and effective phonon mean free path. Moreover, the decrease rate of thermal conductivity depends on the distribution angle of covalent bond chain. With the increase of interlayer covalent bond concentration, when the interlayer covalent bond chain is parallel to the direction of heat flow, the thermal conductivity decreases the slowest because the heat transfer channel along the heat flow direction is gradually affected; when the interlayer covalent bond chain is at an angle to the direction of heat flow, the thermal conductivity decreases more rapidly, and the larger the angle, the faster the thermal conductivity decreases. The rapid decline of thermal conductivity is due to the formation of interfacial thermal resistance at the interlayer covalent bond chain, where strong phonon-interface scattering occurs. In addition, it is found that the thermal conductivity of bilayer graphene nanoribbon with interlayer bonding will be further reduced by tensile strain due to the intensification of phonon scattering and the reduction of phonon group velocities. The results show that the thermal conductivity of bilayer graphene nanoribbon can be controlled by interlayer bonding and tensile strain. These conclusions are of great significance for the design and thermal control of graphene based nanodevices.
通过层间共价键和拉伸应变调节双层石墨烯纳米带的导热性
石墨烯的层间键合是石墨烯的一种改性方法,可以改变石墨烯的力学和电导率,但也会影响其热性能。本文采用非平衡分子动力学方法研究了局部碳sp<sup>3</sup>层间共价键链在不同浓度、不同角度和不同拉伸应变下的杂化(层间形成的共价键)。通过声子态密度分析了双层石墨烯纳米带导热系数变化的机理。结果如下:随着层间共价键浓度的增加,声子散射加剧,声子群速度和有效声子平均自由程降低,导致双层石墨烯纳米带的导热系数降低。导热系数的下降速率与共价键链的分布角度有关。随着层间共价键浓度的增加,当层间共价键链与热流方向平行时,由于沿热流方向的换热通道逐渐受到影响,导热系数降低的最慢;当层间共价键链与热流方向成一定角度时,导热系数下降得更快,角度越大,导热系数下降得越快。热导率的快速下降是由于在层间共价键链上形成了界面热阻,在那里发生了强烈的声子界面散射。此外,发现层间键合的双层石墨烯纳米带由于声子散射的加剧和声子群速度的降低,在拉伸应变的作用下,其导热系数会进一步降低。结果表明,双层石墨烯纳米带的热导率可以通过层间键合和拉伸应变来控制。这些结论对石墨烯基纳米器件的设计和热控制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信