Евгений Константинович Башкиров, Evgenii Konstantinovich Bashkirov
{"title":"Динамика точно решаемой нелинейной модели квантовой электродинамики резонаторов","authors":"Евгений Константинович Башкиров, Evgenii Konstantinovich Bashkirov","doi":"10.14498/vsgtu1992","DOIUrl":null,"url":null,"abstract":"Рассмотрена система, состоящая из двух идентичных искусственных атомов (кубитов), нерезонансно взаимодействующих посредством вырожденных двухфотонных переходов с модой теплового квантового поля идеального микроволнового резонатора при наличии керровской нелинейности. Для рассматриваемой модели получено точное решение квантового уравнения Лиувилля для полной матрицы плотности системы «два кубита + мода поля резонатора». Для решения квантового уравнения эволюции использовано представление «одетых» состояний, то есть собственных функций гамильтониана. Найден полный набор «одетых» состояний рассматриваемой модели. С его помощью первоначально найдено решение уравнения эволюции для перепутанных начальных состояний кубитов и фоковских состояний поля резонатора, то есть состояний с определенным числом фотонов в резонаторной моде. Указанное решение использовано для построения точного решения квантового уравнения Лиувилля в случае теплового состояния поля резонатора. Усреднением полной матрицы плотности по переменным поля резонатора найдена редуцированная матрица плотности двух кубитов. Двухкубитная матрица плотности использована для вычисления параметра перепутывания кубитов в аналитическом виде для двух типов начальных перепутанных состояний кубитов белловского типа. В качестве количественного критерия перепутывания кубитов выбран параметр Переса-Хородецких, или отрицательность. Проведено численное моделирование временной зависимости параметра перепутывания кубитов для различных параметров модели и начальных состояний кубитов. Наиболее интересным представляется результат, заключающийся в том, что для некоторых параметров модели учет керровской нелинейности приводит к существенной стабилизации начального перепутывания кубитов, а также к исчезновению эффекта мгновенной смерти перепутывания.","PeriodicalId":43821,"journal":{"name":"Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki","volume":"51 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14498/vsgtu1992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Рассмотрена система, состоящая из двух идентичных искусственных атомов (кубитов), нерезонансно взаимодействующих посредством вырожденных двухфотонных переходов с модой теплового квантового поля идеального микроволнового резонатора при наличии керровской нелинейности. Для рассматриваемой модели получено точное решение квантового уравнения Лиувилля для полной матрицы плотности системы «два кубита + мода поля резонатора». Для решения квантового уравнения эволюции использовано представление «одетых» состояний, то есть собственных функций гамильтониана. Найден полный набор «одетых» состояний рассматриваемой модели. С его помощью первоначально найдено решение уравнения эволюции для перепутанных начальных состояний кубитов и фоковских состояний поля резонатора, то есть состояний с определенным числом фотонов в резонаторной моде. Указанное решение использовано для построения точного решения квантового уравнения Лиувилля в случае теплового состояния поля резонатора. Усреднением полной матрицы плотности по переменным поля резонатора найдена редуцированная матрица плотности двух кубитов. Двухкубитная матрица плотности использована для вычисления параметра перепутывания кубитов в аналитическом виде для двух типов начальных перепутанных состояний кубитов белловского типа. В качестве количественного критерия перепутывания кубитов выбран параметр Переса-Хородецких, или отрицательность. Проведено численное моделирование временной зависимости параметра перепутывания кубитов для различных параметров модели и начальных состояний кубитов. Наиболее интересным представляется результат, заключающийся в том, что для некоторых параметров модели учет керровской нелинейности приводит к существенной стабилизации начального перепутывания кубитов, а также к исчезновению эффекта мгновенной смерти перепутывания.