Machine learning for non-orographic gravity waves in a climate model

Steven C Hardiman, Adam A Scaife, Annelize van Niekerk, Rachel Prudden, Aled Owen, Samantha V Adams, Tom Dunstan, Nick J Dunstone, Sam Madge
{"title":"Machine learning for non-orographic gravity waves in a climate model","authors":"Steven C Hardiman, Adam A Scaife, Annelize van Niekerk, Rachel Prudden, Aled Owen, Samantha V Adams, Tom Dunstan, Nick J Dunstone, Sam Madge","doi":"10.1175/aies-d-22-0081.1","DOIUrl":null,"url":null,"abstract":"Abstract There is growing use of machine learning algorithms to replicate sub-grid parametrisation schemes in global climate models. Parametrisations rely on approximations, thus there is potential for machine learning to aid improvements. In this study, a neural network is used to mimic the behaviour of the non-orographic gravity wave scheme used in the Met Office climate model, important for stratospheric climate and variability. The neural network is found to require only two of the six inputs used by the parametrisation scheme, suggesting the potential for greater efficiency in this scheme. Use of a one-dimensional mechanistic model is advocated, allowing neural network hyperparameters to be chosen based on emergent features of the coupled system with minimal computational cost, and providing a test bed prior to coupling to a climate model. A climate model simulation, using the neural network in place of the existing parametrisation scheme, is found to accurately generate a quasi-biennial oscillation of the tropical stratospheric winds, and correctly simulate the non-orographic gravity wave variability associated with the El Niño Southern Oscillation and stratospheric polar vortex variability. These internal sources of variability are essential for providing seasonal forecast skill, and the gravity wave forcing associated with them is reproduced without explicit training for these patterns.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0081.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract There is growing use of machine learning algorithms to replicate sub-grid parametrisation schemes in global climate models. Parametrisations rely on approximations, thus there is potential for machine learning to aid improvements. In this study, a neural network is used to mimic the behaviour of the non-orographic gravity wave scheme used in the Met Office climate model, important for stratospheric climate and variability. The neural network is found to require only two of the six inputs used by the parametrisation scheme, suggesting the potential for greater efficiency in this scheme. Use of a one-dimensional mechanistic model is advocated, allowing neural network hyperparameters to be chosen based on emergent features of the coupled system with minimal computational cost, and providing a test bed prior to coupling to a climate model. A climate model simulation, using the neural network in place of the existing parametrisation scheme, is found to accurately generate a quasi-biennial oscillation of the tropical stratospheric winds, and correctly simulate the non-orographic gravity wave variability associated with the El Niño Southern Oscillation and stratospheric polar vortex variability. These internal sources of variability are essential for providing seasonal forecast skill, and the gravity wave forcing associated with them is reproduced without explicit training for these patterns.
气候模型中非地形重力波的机器学习
越来越多的人使用机器学习算法来复制全球气候模型中的子网格参数化方案。参数化依赖于近似值,因此机器学习有可能帮助改进。在这项研究中,一个神经网络被用来模拟英国气象局气候模式中使用的非地形重力波方案的行为,这对平流层气候和变率很重要。发现神经网络只需要参数化方案使用的六个输入中的两个,这表明该方案具有更高效率的潜力。提倡使用一维机制模型,允许以最小的计算成本根据耦合系统的紧急特征选择神经网络超参数,并在耦合到气候模型之前提供一个试验台。使用神经网络代替现有参数化方案的气候模式模拟,可以准确地生成热带平流层风的准两年一次振荡,并正确地模拟与El Niño南方涛动和平流层极涡变化相关的非地形重力波变率。这些内部变率源对于提供季节预报技能是必不可少的,而与之相关的重力波强迫是在没有对这些模式进行明确训练的情况下重现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信