Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins
{"title":"Wake Characterization of Building Clusters Immersed in Deep Boundary Layers","authors":"Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins","doi":"10.1007/s10546-023-00830-0","DOIUrl":null,"url":null,"abstract":"Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> ) on the mean structure and decay of their wakes. Arrays of size 3 $$\\times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 3, 4 $$\\times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 4,and 5 $$\\times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 5, AR = 4, 6, and 8, and $$W_S$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> = 0.5 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 1 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 2 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> and 4 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> (where $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:math> ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$0<x/W_A< {0.45}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:mrow> </mml:math> ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo>></mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), clusters’ wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near- and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"8 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10546-023-00830-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ WS ) on the mean structure and decay of their wakes. Arrays of size 3 $$\times $$ × 3, 4 $$\times $$ × 4,and 5 $$\times $$ × 5, AR = 4, 6, and 8, and $$W_S$$ WS = 0.5 $$W_B$$ WB , 1 $$W_B$$ WB , 2 $$W_B$$ WB and 4 $$W_B$$ WB (where $$W_B$$ WB is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ WA ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$00<x/WA<0.45 ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ 0.45<x/WA<1.5 ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ x/WA>1.5 ), clusters’ wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near- and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.
期刊介绍:
Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.