Computing the Non-properness Set of Real Polynomial Maps in the Plane

IF 0.8 Q2 MATHEMATICS
Boulos El Hilany, Elias Tsigaridas
{"title":"Computing the Non-properness Set of Real Polynomial Maps in the Plane","authors":"Boulos El Hilany, Elias Tsigaridas","doi":"10.1007/s10013-023-00652-0","DOIUrl":null,"url":null,"abstract":"Abstract We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set , is a subset of $$\\mathbb {K}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where a dominant polynomial map $$f: \\mathbb {K}^2 \\rightarrow \\mathbb {K}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>→</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> is not proper; $$\\mathbb {K}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> could be either $$\\mathbb {C}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> or $$\\mathbb {R}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>R</mml:mi> </mml:math> . Unlike all the previously known approaches we make no assumptions on f whenever $$\\mathbb {K} = \\mathbb {R}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple .","PeriodicalId":45919,"journal":{"name":"Vietnam Journal of Mathematics","volume":"38 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10013-023-00652-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set , is a subset of $$\mathbb {K}^2$$ K 2 , where a dominant polynomial map $$f: \mathbb {K}^2 \rightarrow \mathbb {K}^2$$ f : K 2 K 2 is not proper; $$\mathbb {K}$$ K could be either $$\mathbb {C}$$ C or $$\mathbb {R}$$ R . Unlike all the previously known approaches we make no assumptions on f whenever $$\mathbb {K} = \mathbb {R}$$ K = R ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple .
平面上实多项式映射的非性质集的计算
摘要引入新的数学和计算工具,提出了一种计算平面上多项式映射非适当集的完整算法。特别地,这个集合,我们称之为Jelonek集合,是$$\mathbb {K}^2$$ K 2的一个子集,其中一个优势多项式映射$$f: \mathbb {K}^2 \rightarrow \mathbb {K}^2$$ f: K 2→K 2是不合适的;$$\mathbb {K}$$ K可以是$$\mathbb {C}$$ C或者$$\mathbb {R}$$ R。不像以前所有已知的方法,当$$\mathbb {K} = \mathbb {R}$$ K = R时,我们不对f做任何假设;这是第一个具有这种性质的算法。该算法考虑了多项式的牛顿多面体。作为一个副产品,我们提供了一个更精细的非适当性集合的表示作为半代数曲线的并,这些曲线对应于牛顿多面体的边,这是一个独立的兴趣。最后,我们对该算法进行了精确的布尔复杂度分析,并在maple中实现了原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
52
期刊介绍: Vietnam Journal of Mathematics was originally founded in 1973 by the Vietnam Academy of Science and Technology and the Vietnam Mathematical Society. Published by Springer from 1997 to 2005 and since 2013, this quarterly journal is open to contributions from researchers from all over the world, where all submitted articles are peer-reviewed by experts worldwide. It aims to publish high-quality original research papers and review articles in all active areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信