On groups with chordal power graph, including a classification in the case of finite simple groups

Pub Date : 2023-10-04 DOI:10.1007/s10801-023-01262-2
Jendrik Brachter, Eda Kaja
{"title":"On groups with chordal power graph, including a classification in the case of finite simple groups","authors":"Jendrik Brachter, Eda Kaja","doi":"10.1007/s10801-023-01262-2","DOIUrl":null,"url":null,"abstract":"Abstract We prove various properties on the structure of groups whose power graph is chordal. Nilpotent groups with this property have been classified by (Electron J Combin 28(3):14, 2021). Here we classify the finite simple groups with chordal power graph, relative to typical number theoretic conditions. We do so by devising several sufficient conditions for the existence and non-existence of long cycles in power graphs of finite groups. We examine other natural group classes, including special linear, symmetric, generalized dihedral and quaternion groups, and we characterize direct products with chordal power graph. The classification problem is thereby reduced to directly indecomposable groups, and we further obtain a list of possible socles. Lastly, we give a general bound on the length of an induced path in chordal power graphs, providing another potential road to advance the classification beyond simple groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01262-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove various properties on the structure of groups whose power graph is chordal. Nilpotent groups with this property have been classified by (Electron J Combin 28(3):14, 2021). Here we classify the finite simple groups with chordal power graph, relative to typical number theoretic conditions. We do so by devising several sufficient conditions for the existence and non-existence of long cycles in power graphs of finite groups. We examine other natural group classes, including special linear, symmetric, generalized dihedral and quaternion groups, and we characterize direct products with chordal power graph. The classification problem is thereby reduced to directly indecomposable groups, and we further obtain a list of possible socles. Lastly, we give a general bound on the length of an induced path in chordal power graphs, providing another potential road to advance the classification beyond simple groups.

Abstract Image

分享
查看原文
关于具有弦幂图的群,包括有限简单群的分类
摘要证明了幂图为弦的群结构的若干性质。具有此性质的幂零群已被(Electron J Combin 28(3): 14,2021)分类。本文根据典型的数论条件,对具有弦幂图的有限单群进行了分类。为此,我们设计了有限群幂图中长循环存在和不存在的几个充分条件。我们研究了其他自然群类,包括特殊线性群、对称群、广义二面体群和四元数群,并用弦幂图刻画了直接积。因此,分类问题被简化为直接不可分解的组,我们进一步得到了可能的socles列表。最后,我们给出了弦幂图中诱导路径长度的一般界,这为超越简单群的分类提供了另一种可能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信