A comprehensive study of various regressions and deep learning approaches for the prediction of friction factor in mobile bed channels

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Akshita Bassi, Ajaz Ahmad Mir, Bimlesh Kumar, Mahesh Patel
{"title":"A comprehensive study of various regressions and deep learning approaches for the prediction of friction factor in mobile bed channels","authors":"Akshita Bassi, Ajaz Ahmad Mir, Bimlesh Kumar, Mahesh Patel","doi":"10.2166/hydro.2023.246","DOIUrl":null,"url":null,"abstract":"Abstract A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.
综合研究各种回归和深度学习方法对移动河床通道摩擦系数的预测
摘要:动床渠道水力学的一个基本问题是摩擦系数(λ)的测量,它代表了水力阻力引起的水头损失。在实验室中进行的实验阻碍了λ在短时间内的可预测性。传统预测方法面临的主要挑战是由于其主观性和对各种假设的依赖。因此,先进的机器学习(ML)和人工智能方法可以用来克服这项繁琐的任务。在这里,使用八种不同的ML技术来使用八种不同的输入特征来预测λ。为了比较模型的性能,对各种误差度量进行了评估和比较。从热图数据可视化、泰勒图、灵敏度分析和不同输入场景的参数分析中进行了图形推理。从研究结果可以看出,IS1中K Star的相关系数(R2)值为0.9716,其次是IS2中的M5 Prime(0.9712)和IS4中的Random Forest(0.9603),相对于其他ML模型,预测λ的误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信