Kothuru Venkatadri, Syed Fazuruddin, Osman Anwar Bég, Obbu Ramesh
{"title":"Natural convection of nanofluid flow in a porous medium in a right-angle trapezoidal enclosure: a Tiwari and Das’ nanofluid model","authors":"Kothuru Venkatadri, Syed Fazuruddin, Osman Anwar Bég, Obbu Ramesh","doi":"10.1080/16583655.2023.2263224","DOIUrl":null,"url":null,"abstract":"The study uses Tiwari and Das’ nanofluid model to present a study on free convective flows in a right-angled trapezoidal cavity that is saturated with a porous bed and filled with Cu-water nanofluid material. This investigation aims to enhance the characteristics of hybrid fuel cells and energy depository devices by analysing the cavity's heat expansion and fluid flow properties. In trapezoidal enclosures, the inclined and right wall portions are maintained at different isothermal temperatures at all times. Finite difference-based stream function-vorticity numerical simulations are employed to carry out this analysis. The outcomes have been presented for isotherms, streamlines, and Nusselt numbers concerning nanoparticle volume fraction, Darcy number, and various Rayleigh numbers. It is found that the inverse relationship between the thermal Rayleigh number and the nanofluid’s volume has a significant impact on the average Nusselt number.","PeriodicalId":17100,"journal":{"name":"Journal of Taibah University for Science","volume":"19 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Taibah University for Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16583655.2023.2263224","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study uses Tiwari and Das’ nanofluid model to present a study on free convective flows in a right-angled trapezoidal cavity that is saturated with a porous bed and filled with Cu-water nanofluid material. This investigation aims to enhance the characteristics of hybrid fuel cells and energy depository devices by analysing the cavity's heat expansion and fluid flow properties. In trapezoidal enclosures, the inclined and right wall portions are maintained at different isothermal temperatures at all times. Finite difference-based stream function-vorticity numerical simulations are employed to carry out this analysis. The outcomes have been presented for isotherms, streamlines, and Nusselt numbers concerning nanoparticle volume fraction, Darcy number, and various Rayleigh numbers. It is found that the inverse relationship between the thermal Rayleigh number and the nanofluid’s volume has a significant impact on the average Nusselt number.
期刊介绍:
Journal of Taibah University for Science (JTUSCI) is an international scientific journal for the basic sciences. This journal is produced and published by Taibah University, Madinah, Kingdom of Saudi Arabia. The scope of the journal is to publish peer reviewed research papers, short communications, reviews and comments as well as the scientific conference proceedings in a special issue. The emphasis is on biology, geology, chemistry, environmental control, mathematics and statistics, nanotechnology, physics, and related fields of study. The JTUSCI now quarterly publishes four issues (Jan, Apr, Jul and Oct) per year. Submission to the Journal is based on the understanding that the article has not been previously published in any other form and is not considered for publication elsewhere.