A Moore‐Gibson‐Thompson heat conduction equation for non centrosymmetric rigid solids

IF 2.3 4区 工程技术 Q1 MATHEMATICS, APPLIED
Noelia Bazarra, José R. Fernández, Ramón Quintanilla
{"title":"A Moore‐Gibson‐Thompson heat conduction equation for non centrosymmetric rigid solids","authors":"Noelia Bazarra, José R. Fernández, Ramón Quintanilla","doi":"10.1002/zamm.202300531","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a new thermal model based on the so‐called Moore‐Gibson‐Thompson equation for heat conduction, assuming that the material is not centrosymmetric. The existence of a unique solution is proved, although only the main steps of its proof are provided for the sake of simplicity in the presentation. A sufficient condition is proposed to guarantee the stability of the solutions. Then, a fully discrete scheme is introduced by using the classical finite element scheme and the implicit Euler scheme. A discrete stability property and an a priori error analysis are shown, from which the linear convergence of the approximations is deduced. Finally, some numerical simulations in one‐dimensional examples are performed to show the behavior of the discrete energy decay.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":"303 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we propose a new thermal model based on the so‐called Moore‐Gibson‐Thompson equation for heat conduction, assuming that the material is not centrosymmetric. The existence of a unique solution is proved, although only the main steps of its proof are provided for the sake of simplicity in the presentation. A sufficient condition is proposed to guarantee the stability of the solutions. Then, a fully discrete scheme is introduced by using the classical finite element scheme and the implicit Euler scheme. A discrete stability property and an a priori error analysis are shown, from which the linear convergence of the approximations is deduced. Finally, some numerical simulations in one‐dimensional examples are performed to show the behavior of the discrete energy decay.
非中心对称刚性固体的Moore - Gibson - Thompson热传导方程
在本文中,我们提出了一种新的基于Moore - Gibson - Thompson热传导方程的热模型,假设材料不是中心对称的。本文证明了一个唯一解的存在性,但为了简单起见,只给出了证明的主要步骤。给出了保证解稳定的充分条件。然后,利用经典有限元格式和隐式欧拉格式引入了全离散格式。给出了离散稳定性的性质和先验误差分析,并由此导出了近似的线性收敛性。最后,对一维例子进行了数值模拟,以显示离散能量衰减的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
199
审稿时长
3.0 months
期刊介绍: ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信