Role of midlatitude baroclinic condition in heavy rainfall events directly induced by tropical cyclones in South Korea

IF 2.8 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Chanil Park, Seok-Woo Son, Yukari N. Takayabu, Sang-Hun Park, Dong-Hyun Cha, Eun Jeong Cha
{"title":"Role of midlatitude baroclinic condition in heavy rainfall events directly induced by tropical cyclones in South Korea","authors":"Chanil Park, Seok-Woo Son, Yukari N. Takayabu, Sang-Hun Park, Dong-Hyun Cha, Eun Jeong Cha","doi":"10.1175/mwr-d-23-0046.1","DOIUrl":null,"url":null,"abstract":"Abstract Recurving tropical cyclones (TCs) in the western North Pacific often cause heavy rainfall events (HREs) in East Asia. However, how their interactions with midlatitude flows alter the characteristics of HREs has remained unclear. The present study examines the synoptic-dynamic characteristics of HREs directly resulting from TCs in South Korea with a focus on the role of midlatitude baroclinic condition. The HREs are categorized into two clusters based on midlatitude tropopause patterns: i.e., strongly (C1) and weakly (C2) baroclinic conditions. The C1, which is common in late summer, is characterized by a well-defined trough-ridge couplet and jet streak at the tropopause. As TCs approach, the trough-ridge couplet amplifies but is anchored by divergent TC outflow. This leads to phase locking of the upstream trough with TCs and thereby prompts substantial structural changes of TCs reminiscent of extratropical transition. The synergistic TC–midlatitude flow interactions allow for enhanced quasigeostrophic forcing over a broad area. This allows HREs to occur even before TC landfall with more inland rainfall than C2 HREs. In contrast, C2, which is mainly observed in mid-summer, does not accompany the undulating tropopause. In the absence of strong interactions with midlatitude flows, TCs rapidly dissipate after HREs while maintaining their tropical features. The upward motion is confined to the inherent TC convection, and thus HREs occur only when TCs are located in the vicinity of the country. These findings suggest that midlatitude baroclinic condition determines the spatial extent of TC rainfall and the timing of TC-induced HREs in South Korea.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"110 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0046.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Recurving tropical cyclones (TCs) in the western North Pacific often cause heavy rainfall events (HREs) in East Asia. However, how their interactions with midlatitude flows alter the characteristics of HREs has remained unclear. The present study examines the synoptic-dynamic characteristics of HREs directly resulting from TCs in South Korea with a focus on the role of midlatitude baroclinic condition. The HREs are categorized into two clusters based on midlatitude tropopause patterns: i.e., strongly (C1) and weakly (C2) baroclinic conditions. The C1, which is common in late summer, is characterized by a well-defined trough-ridge couplet and jet streak at the tropopause. As TCs approach, the trough-ridge couplet amplifies but is anchored by divergent TC outflow. This leads to phase locking of the upstream trough with TCs and thereby prompts substantial structural changes of TCs reminiscent of extratropical transition. The synergistic TC–midlatitude flow interactions allow for enhanced quasigeostrophic forcing over a broad area. This allows HREs to occur even before TC landfall with more inland rainfall than C2 HREs. In contrast, C2, which is mainly observed in mid-summer, does not accompany the undulating tropopause. In the absence of strong interactions with midlatitude flows, TCs rapidly dissipate after HREs while maintaining their tropical features. The upward motion is confined to the inherent TC convection, and thus HREs occur only when TCs are located in the vicinity of the country. These findings suggest that midlatitude baroclinic condition determines the spatial extent of TC rainfall and the timing of TC-induced HREs in South Korea.
中纬度斜压条件在韩国热带气旋直接引起的强降雨事件中的作用
北太平洋西部的热带气旋(TCs)经常引起东亚地区的强降雨事件(HREs)。然而,它们与中纬度气流的相互作用如何改变HREs的特征仍不清楚。本研究考察了韩国由tc直接引起的HREs的天气动力学特征,重点研究了中纬度斜压条件的作用。根据中纬度对流层顶型态,HREs可分为两类:强斜压(C1)和弱斜压(C2)。C1在夏末很常见,其特征是对流层顶有明显的槽脊对流层和急流条纹。当TC接近时,槽脊对被放大,但被发散的TC流出所锚定。这导致上游槽与tc锁相,从而促使tc发生实质性的结构变化,使人想起温带过渡。协同的tc -中纬度气流相互作用允许在大范围内增强准地转强迫。这使得HREs甚至发生在TC登陆之前,内陆降雨量比C2 HREs多。相反,主要在仲夏观测到的C2并不伴随对流层顶的波动。在缺乏与中纬度气流的强相互作用的情况下,高温后tc迅速消散,同时保持其热带特征。上升运动局限于固有的TC对流,因此只有当TC位于国家附近时才会发生高res。这些结果表明,中纬度斜压条件决定了韩国TC降雨的空间范围和TC诱发HREs的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monthly Weather Review
Monthly Weather Review 地学-气象与大气科学
CiteScore
6.40
自引率
12.50%
发文量
186
审稿时长
3-6 weeks
期刊介绍: Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信