Samad Narimani, Seyed Motreza Davarpanah, Balázs Vásárhelyi
{"title":"Estimation of the Poisson's Ratio of the Rock Mass","authors":"Samad Narimani, Seyed Motreza Davarpanah, Balázs Vásárhelyi","doi":"10.3311/ppci.22689","DOIUrl":null,"url":null,"abstract":"The value of Poisson's ratio is a crucial parameter in rock mechanics and engineering for both intact rock and rock mass. Poisson's ratio has not gotten the attention it merits compared to other essential mechanical characteristics of intact rock and rock mass. Limited relationships exist between rock mass classification systems (such as RMR, RMQR, Q, and GSI) and Poisson's ratio. This paper provides a comprehensive review of models proposed by various researchers for estimating Poisson's ratio for rock mass. The different methods are compared, and new general equations are derived. The results indicate that the Poisson's ratio value of rock mass is inversely proportional to its quality and strength and depends on the Poisson's ratio value of the intact rock. Specifically, a linear equation is obtained using the RMR or GSI system, showing that the Poisson's ratio increases as the quality and strength of the rock mass decrease. The Q system has a logarithmic link between the rock mass quality and Poisson's ratio. It should be noted that the derived equations are applicable only under the assumption of a homogeneous isotropic rock mass.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppci.22689","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The value of Poisson's ratio is a crucial parameter in rock mechanics and engineering for both intact rock and rock mass. Poisson's ratio has not gotten the attention it merits compared to other essential mechanical characteristics of intact rock and rock mass. Limited relationships exist between rock mass classification systems (such as RMR, RMQR, Q, and GSI) and Poisson's ratio. This paper provides a comprehensive review of models proposed by various researchers for estimating Poisson's ratio for rock mass. The different methods are compared, and new general equations are derived. The results indicate that the Poisson's ratio value of rock mass is inversely proportional to its quality and strength and depends on the Poisson's ratio value of the intact rock. Specifically, a linear equation is obtained using the RMR or GSI system, showing that the Poisson's ratio increases as the quality and strength of the rock mass decrease. The Q system has a logarithmic link between the rock mass quality and Poisson's ratio. It should be noted that the derived equations are applicable only under the assumption of a homogeneous isotropic rock mass.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.