Generalized Fibonacci–Leonardo numbers

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Urszula Bednarz, Małgorzata Wołowiec-Musiał
{"title":"Generalized Fibonacci–Leonardo numbers","authors":"Urszula Bednarz, Małgorzata Wołowiec-Musiał","doi":"10.1080/10236198.2023.2265509","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, by means of independent sets in a graph with multiplicity assigned to each set, we introduce generalized Fibonacci–Leonardo numbers, which are the common generalization of the classical Fibonacci and Leonardo numbers. We give the Binet formula, the generating function, and we prove some identities for generalized Fibonacci–Leonardo numbers. We also define matrix generators for the introduced numbers.Keywords: Fibonacci numbersLeonardo numbersindependent setsmatrix generatorAMS CLASSIFICATIONS: 11B3711B3911C20 AcknowledgmentsThe authors wish to thank the referee for all suggestions which improved this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":15616,"journal":{"name":"Journal of Difference Equations and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Difference Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2265509","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractIn this paper, by means of independent sets in a graph with multiplicity assigned to each set, we introduce generalized Fibonacci–Leonardo numbers, which are the common generalization of the classical Fibonacci and Leonardo numbers. We give the Binet formula, the generating function, and we prove some identities for generalized Fibonacci–Leonardo numbers. We also define matrix generators for the introduced numbers.Keywords: Fibonacci numbersLeonardo numbersindependent setsmatrix generatorAMS CLASSIFICATIONS: 11B3711B3911C20 AcknowledgmentsThe authors wish to thank the referee for all suggestions which improved this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).
广义斐波那契-列奥纳多数
摘要本文利用图中具有多重性的独立集,引入了广义Fibonacci - Leonardo数,它是经典Fibonacci数和Leonardo数的一般推广。给出了Binet公式和生成函数,并证明了一些广义fibonaci - leonardo数的恒等式。我们还为引入的数定义了矩阵生成器。关键词:斐波那契数莱昂纳多数独立集矩阵生成器ams分类:11B3711B3911C20致谢感谢审稿人对本文的改进提出的建议。披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
70
审稿时长
4-8 weeks
期刊介绍: Journal of Difference Equations and Applications presents state-of-the-art papers on difference equations and discrete dynamical systems and the academic, pure and applied problems in which they arise. The Journal is composed of original research, expository and review articles, and papers that present novel concepts in application and techniques. The scope of the Journal includes all areas in mathematics that contain significant theory or applications in difference equations or discrete dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信