On a diffusion which stochastically restarts from moving random spatial positions: a non-renewal framework

Telles Timóteo Da Silva
{"title":"On a diffusion which stochastically restarts from moving random spatial positions: a non-renewal framework","authors":"Telles Timóteo Da Silva","doi":"10.1088/1751-8121/ad09ed","DOIUrl":null,"url":null,"abstract":"Abstract We consider a diffusive particle that at random times, exponentially distributed with parameter $\\beta$, stops its motion and restarts from a moving random position $Y(t)$ in space. The position $X(t)$ of the particle and the restarts do not affect the dynamics of $Y(t)$, so our framework constitutes in a non-renewal one. We exhibit the feasibility to build a rigourous general theory in this setup from the analysis of sample paths.To prove the stochastic process $X(t)$ has a non-equilibrium steady-state, assumptions related to the confinement of $Y(t)$ have to be imposed. In addition we design a detailed example where the random restart positions are provided by the paradigmatic Evans and Majumdar's diffusion with stochastic resettings \\cite{evans_majumdar_2011b}, with resetting rate $\\beta_Y.$ We show the ergodic property for the main process and for the stochastic process of jumps performed by the particle. A striking feature emerges from the examination of the jumps, since their negative covariance can be minimized with respect to both rates $\\beta$ and $\\beta_Y$, independently. Moreover we discuss the theoretical consequences that this non-renewal model entails for the analytical study of the mean first-passage time (FPT) and mean cost up to FPT.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"16 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad09ed","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider a diffusive particle that at random times, exponentially distributed with parameter $\beta$, stops its motion and restarts from a moving random position $Y(t)$ in space. The position $X(t)$ of the particle and the restarts do not affect the dynamics of $Y(t)$, so our framework constitutes in a non-renewal one. We exhibit the feasibility to build a rigourous general theory in this setup from the analysis of sample paths.To prove the stochastic process $X(t)$ has a non-equilibrium steady-state, assumptions related to the confinement of $Y(t)$ have to be imposed. In addition we design a detailed example where the random restart positions are provided by the paradigmatic Evans and Majumdar's diffusion with stochastic resettings \cite{evans_majumdar_2011b}, with resetting rate $\beta_Y.$ We show the ergodic property for the main process and for the stochastic process of jumps performed by the particle. A striking feature emerges from the examination of the jumps, since their negative covariance can be minimized with respect to both rates $\beta$ and $\beta_Y$, independently. Moreover we discuss the theoretical consequences that this non-renewal model entails for the analytical study of the mean first-passage time (FPT) and mean cost up to FPT.
关于从移动的随机空间位置随机重新开始的扩散:非更新框架
我们考虑一个扩散粒子,它在随机时间,以参数$\beta$为指数分布,停止运动并从空间中的随机位置$Y(t)$重新开始。粒子的位置$X(t)$和重新启动不影响$Y(t)$的动力学,因此我们的框架构成了一个不更新的框架。我们展示了可行性,以建立一个严格的一般理论,在这种设置从样本路径的分析。为了证明随机过程$X(t)$具有非平衡稳态,必须施加与$Y(t)$约束有关的假设。此外,我们还设计了一个详细的例子,其中随机重新启动位置由典型的Evans和Majumdar扩散提供,具有随机重置\cite{evans_majumdar_2011b},具有重置率$\beta_Y.$。我们展示了主过程和粒子进行跳跃的随机过程的遍历性。从对跳跃的检查中可以发现一个显著的特征,因为它们的负协方差可以独立地相对于$\beta$和$\beta_Y$两个速率最小化。此外,我们还讨论了该非更新模型对平均首次通过时间(FPT)和平均成本(直至FPT)的分析研究的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信