E-Chem Education: A Crash Course in Electrochemical Engineering for Caustic Soda Plant Design

IF 1.7 Q4 ELECTROCHEMISTRY
Christopher G. Arges, Darrell Velegol, Matthew L. Jordan
{"title":"E-Chem Education: A Crash Course in Electrochemical Engineering for Caustic Soda Plant Design","authors":"Christopher G. Arges, Darrell Velegol, Matthew L. Jordan","doi":"10.1149/2.f04233if","DOIUrl":null,"url":null,"abstract":"The capstone chemical engineering senior process design course at Penn State in spring 2023 tasked students with designing a caustic soda process to partially meet the global demand for commoditized sodium hydroxide. This article disseminates our experience teaching senior chemical engineering students the core tenets of electrochemical engineering in a single class period for designing an electrolytic caustic soda process. In this E-Chem Education article, we relate key concepts found in chemical engineering (such as sizing up a reactor volume), which chemical engineering seniors are adept with, to electrochemical engineering principles (e.g., current density, voltage, and membrane electrode assembly area) for sizing up and costing out a chlor-alkali electrolyzer. Furthermore, we also discuss alternative electrolyzer designs outside the traditional chlor-alkali process, such as oxygen depolarized cathode (ODC) chlor-alkali and bipolar membrane electrodialysis (BPMED), for caustic soda production and the pros and cons of the alternative process designs.","PeriodicalId":47157,"journal":{"name":"Electrochemical Society Interface","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Society Interface","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.f04233if","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The capstone chemical engineering senior process design course at Penn State in spring 2023 tasked students with designing a caustic soda process to partially meet the global demand for commoditized sodium hydroxide. This article disseminates our experience teaching senior chemical engineering students the core tenets of electrochemical engineering in a single class period for designing an electrolytic caustic soda process. In this E-Chem Education article, we relate key concepts found in chemical engineering (such as sizing up a reactor volume), which chemical engineering seniors are adept with, to electrochemical engineering principles (e.g., current density, voltage, and membrane electrode assembly area) for sizing up and costing out a chlor-alkali electrolyzer. Furthermore, we also discuss alternative electrolyzer designs outside the traditional chlor-alkali process, such as oxygen depolarized cathode (ODC) chlor-alkali and bipolar membrane electrodialysis (BPMED), for caustic soda production and the pros and cons of the alternative process designs.
电子化学教育:烧碱装置设计之电化学工程速成班
2023年春季,宾夕法尼亚州立大学的顶级化学工程高级工艺设计课程要求学生设计一种烧碱工艺,以部分满足全球对商品氢氧化钠的需求。本文以电解烧碱工艺设计为例,介绍了我们在单节课上对化学工程高年级学生讲授电化学工程核心原理的经验。在这篇E-Chem教育文章中,我们将化学工程中的关键概念(如计算反应器体积)与电化学工程原理(如电流密度,电压和膜电极组装面积)联系起来,以确定氯碱电解槽的尺寸和成本。此外,我们还讨论了传统氯碱工艺之外的替代电解槽设计,如氧去极化阴极(ODC)氯碱和双极膜电渗析(BPMED),用于烧碱生产以及替代工艺设计的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
5.60%
发文量
62
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信