Combined Effects of Concave and Convex Nonlinearities for Kirchhoff Type Equations with Steep Potential Well and 1 < p < 2 < q < 4

Pub Date : 2023-09-01 DOI:10.1007/s11464-021-0071-1
Jianhua Chen, Xianjiu Huang, Bitao Cheng
{"title":"Combined Effects of Concave and Convex Nonlinearities for Kirchhoff Type Equations with Steep Potential Well and 1 &lt; p &lt; 2 &lt; q &lt; 4","authors":"Jianhua Chen, Xianjiu Huang, Bitao Cheng","doi":"10.1007/s11464-021-0071-1","DOIUrl":null,"url":null,"abstract":"In this paper, we study a class of Kirchhoff type equations with concave and convex nonlinearities and steep potential well. Firstly, we obtain a positive energy solution $$u_{b,\\lambda}^ + $$ by a truncated functional. Furthermore, the concentration behavior of $$u_{b,\\lambda}^ + $$ is also explored on the set V−1 (0) as λ → ∞. Secondly, we also give the existence of a negative solution $$u_{b,\\lambda}^ - $$ via Ekeland variational principle. Finally, we show a nonexistence result of the nontrivial solutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11464-021-0071-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of Kirchhoff type equations with concave and convex nonlinearities and steep potential well. Firstly, we obtain a positive energy solution $$u_{b,\lambda}^ + $$ by a truncated functional. Furthermore, the concentration behavior of $$u_{b,\lambda}^ + $$ is also explored on the set V−1 (0) as λ → ∞. Secondly, we also give the existence of a negative solution $$u_{b,\lambda}^ - $$ via Ekeland variational principle. Finally, we show a nonexistence result of the nontrivial solutions.
分享
查看原文
具有陡势井和1 <的Kirchhoff型方程的凹凸非线性联合效应p & lt;2 & lt;问& lt;4
本文研究了一类具有凹、凸非线性和陡势井的Kirchhoff型方程。首先,通过截断泛函得到正能量解$$u_{b,\lambda}^ + $$。进一步研究了$$u_{b,\lambda}^ + $$在集V−1(0)为λ→∞时的浓度行为。其次,利用Ekeland变分原理,给出了负解$$u_{b,\lambda}^ - $$的存在性。最后给出了非平凡解的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信