HVAC Load Analysis of Residential Building Using ANN Techniques

Q3 Mathematics
Mitali Ray, Lohit Kumar Sahoo
{"title":"HVAC Load Analysis of Residential Building Using ANN Techniques","authors":"Mitali Ray, Lohit Kumar Sahoo","doi":"10.52549/ijeei.v11i3.4607","DOIUrl":null,"url":null,"abstract":"The process of limiting the amount of energy that is utilized is known as energy conservation. This can be accomplished by making more effective use of the energy that is available. As a result, there is a requirement for more effective management of the consumption of energy in buildings. It is essential to have an accurate load calculation for a residential building because the loads for heating and cooling add up a significant portion of the total building loads. In this study, the load analysis of the HVAC (Heating, Ventilation, and Air Conditioning) system in a residential building was carried out by taking into consideration three different neural networks. These networks are known as the feed forward network, the cascaded forward back propagation network, and the Elman back propagation network. During the process of conducting a load study of the heating and cooling loads on an HVAC system, performance measurements like MAE (mean absolute error), MSE (mean square error), MRE (mean relative error), and MAPE (mean absolute percentage error) are taken into consideration. It has been discovered that the cascaded forward back propagation method is the most effective method, with MAE, MSE, MRE, and MAPE values of 0.08, 0.0336, 0.0051, and 0.51% respectively for heating load and MAE, MSE, MRE, and MAPE values of 0.0975, 0.0406, 0.0053, and 0.53% respectively for cooling load.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The process of limiting the amount of energy that is utilized is known as energy conservation. This can be accomplished by making more effective use of the energy that is available. As a result, there is a requirement for more effective management of the consumption of energy in buildings. It is essential to have an accurate load calculation for a residential building because the loads for heating and cooling add up a significant portion of the total building loads. In this study, the load analysis of the HVAC (Heating, Ventilation, and Air Conditioning) system in a residential building was carried out by taking into consideration three different neural networks. These networks are known as the feed forward network, the cascaded forward back propagation network, and the Elman back propagation network. During the process of conducting a load study of the heating and cooling loads on an HVAC system, performance measurements like MAE (mean absolute error), MSE (mean square error), MRE (mean relative error), and MAPE (mean absolute percentage error) are taken into consideration. It has been discovered that the cascaded forward back propagation method is the most effective method, with MAE, MSE, MRE, and MAPE values of 0.08, 0.0336, 0.0051, and 0.51% respectively for heating load and MAE, MSE, MRE, and MAPE values of 0.0975, 0.0406, 0.0053, and 0.53% respectively for cooling load.
基于神经网络技术的住宅空调负荷分析
限制能源使用量的过程被称为节能。这可以通过更有效地利用现有能源来实现。因此,需要更有效地管理建筑物的能源消耗。对住宅建筑进行准确的负荷计算是至关重要的,因为供暖和制冷负荷占建筑总负荷的很大一部分。在本研究中,采用三种不同的神经网络对住宅建筑的暖通空调系统进行负荷分析。这些网络被称为前馈网络,级联前向反向传播网络和Elman反向传播网络。在对HVAC系统的冷热负荷进行负荷研究的过程中,需要考虑MAE(平均绝对误差)、MSE(均方误差)、MRE(平均相对误差)和MAPE(平均绝对百分比误差)等性能测量。研究发现,级联前向反向传播法是最有效的方法,热负荷的MAE、MSE、MRE和MAPE分别为0.08、0.0336、0.0051和0.51%,冷负荷的MAE、MSE、MRE和MAPE分别为0.0975、0.0406、0.0053和0.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indonesian Journal of Electrical Engineering and Informatics
Indonesian Journal of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
1.50
自引率
0.00%
发文量
56
期刊介绍: The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信