Application of Mahalanobis-Taguchi System in Rainfall Trends at UMP Gambang Campus

M.A.M. Jamil, M. Y. Abu, S.N.A.M. Zaini, N.H. Aris, N.S. Pinueh, W.Z.A.W. Muhamad, F. Ramlie, N. Harudin, E. Sari, N.A.A.A. Ghani, N.N. Jaafar
{"title":"Application of Mahalanobis-Taguchi System in Rainfall Trends at UMP Gambang Campus","authors":"M.A.M. Jamil, M. Y. Abu, S.N.A.M. Zaini, N.H. Aris, N.S. Pinueh, W.Z.A.W. Muhamad, F. Ramlie, N. Harudin, E. Sari, N.A.A.A. Ghani, N.N. Jaafar","doi":"10.15282/mekatronika.v5i2.9581","DOIUrl":null,"url":null,"abstract":"Rainfall is a variable meteorological phenomenon that exhibits spatial variability across different locations. Weather stations collect a wide range of parameters to monitor and analyze rainfall patterns. However, not all parameters are equally significant or efficient in performing classification and optimization tasks. In this study, we propose the use of the Mahalanobis-Taguchi system (MTS) method to classify rainfall occurrences by RT-Method and optimize the parameter selection process by T-Method. The data were collected by weather station Vantage Pro2 in UMP Gambang. By applying RT- Method, we can classify the data sample in term of MD for November, May and April while reducing the number of parameters to only those that significantly contribute to the classification, which from 16 parameters to 8 parameters using T-Method. This approach provides a streamlined and efficient methodology for analyzing rainfall patterns and optimizing weather station data collection processes.","PeriodicalId":497272,"journal":{"name":"Mekatronika","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekatronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/mekatronika.v5i2.9581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall is a variable meteorological phenomenon that exhibits spatial variability across different locations. Weather stations collect a wide range of parameters to monitor and analyze rainfall patterns. However, not all parameters are equally significant or efficient in performing classification and optimization tasks. In this study, we propose the use of the Mahalanobis-Taguchi system (MTS) method to classify rainfall occurrences by RT-Method and optimize the parameter selection process by T-Method. The data were collected by weather station Vantage Pro2 in UMP Gambang. By applying RT- Method, we can classify the data sample in term of MD for November, May and April while reducing the number of parameters to only those that significantly contribute to the classification, which from 16 parameters to 8 parameters using T-Method. This approach provides a streamlined and efficient methodology for analyzing rainfall patterns and optimizing weather station data collection processes.
马氏-田口系统在UMP甘邦校区降雨趋势研究中的应用
降雨是一种可变的气象现象,在不同地点表现出空间变异性。气象站收集广泛的参数来监测和分析降雨模式。然而,在执行分类和优化任务时,并非所有参数都同样重要或有效。在本研究中,我们提出使用Mahalanobis-Taguchi系统(MTS)方法对降雨事件进行RT-Method分类,并使用T-Method优化参数选择过程。数据由甘邦的Vantage Pro2气象站收集。通过RT- Method,我们可以根据11月、5月和4月的MD对数据样本进行分类,同时将参数数量减少到只保留对分类有显著贡献的参数,使用T-Method将16个参数减少到8个参数。这种方法为分析降雨模式和优化气象站数据收集过程提供了一种简化而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信