{"title":"Influence of tool pin profile on the mechanical strength and surface roughness of AA6061-T6 overlap joint friction stir welding","authors":"None M.H. Osman, None Norfauzi Tamin","doi":"10.15282/jmes.17.3.2023.4.0758","DOIUrl":null,"url":null,"abstract":"This study presents the tensile strength and surface roughness resulting from friction stir welding (FSW) on the lap joint method using AA 6061 –T6. FSW is conducted by comparing three different tool pin shapes: hexagon, thread, and square. Overlap welding using the FSW method is challenging if machine parameters, such as spindle speed and feed rate, are incompatible. The experiment was conducted using a conventional milling machine with a spindle speed of 1400 -1750 rpm and a feed rate of 20 – 30 mm/min. The results show that a spindle speed of 1750 rpm and a feed rate of 30 mm/min using a square tool pin results in 83.5088 MPa ultimate tensile strength and 0.85 µm surface roughness (Ra), which is much better than hexagon and thread type tool pins. In addition, the overall results on all three tool pin shapes show that higher processing parameters increase tensile strength and surface roughness. This study revealed the effect of parameters on AA6061 –T6 and the resulting implications of mechanical strength and surface roughness.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"50 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.4.0758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the tensile strength and surface roughness resulting from friction stir welding (FSW) on the lap joint method using AA 6061 –T6. FSW is conducted by comparing three different tool pin shapes: hexagon, thread, and square. Overlap welding using the FSW method is challenging if machine parameters, such as spindle speed and feed rate, are incompatible. The experiment was conducted using a conventional milling machine with a spindle speed of 1400 -1750 rpm and a feed rate of 20 – 30 mm/min. The results show that a spindle speed of 1750 rpm and a feed rate of 30 mm/min using a square tool pin results in 83.5088 MPa ultimate tensile strength and 0.85 µm surface roughness (Ra), which is much better than hexagon and thread type tool pins. In addition, the overall results on all three tool pin shapes show that higher processing parameters increase tensile strength and surface roughness. This study revealed the effect of parameters on AA6061 –T6 and the resulting implications of mechanical strength and surface roughness.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.