Sensitivity analysis of erosion on the landward slope of an earthen flood defense located in southern France submitted to wave overtopping

IF 4.2 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, Jena Jeong
{"title":"Sensitivity analysis of erosion on the landward slope of an earthen flood defense located in southern France submitted to wave overtopping","authors":"Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, Jena Jeong","doi":"10.5194/nhess-23-3111-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The study aims to provide a complete analysis framework applied to an earthen dike located in Camargue, France. This dike is regularly submitted to erosion on the landward slope that needs to be repaired. Improving the resilience of the dike calls for a reliable model of damage frequency. The developed system is a combination of copula theory, empirical wave propagation, and overtopping equations as well as a global sensitivity analysis in order to provide the return period of erosion damage on a set dike while also providing recommendations in order for the dike to be reinforced as well as the model to be self-improved. The global sensitivity analysis requires one to calculate a high number of return periods over random observations of the tested parameters. This gives a distribution of the return periods, providing a more general approach to the behavior of the dike. The results show a return period peak around the 2-year mark, close to reported observation. With the distribution being skewed, the mean value is higher and is thus less reliable as a measure of dike safety. The results of the global sensitivity analysis show that no particular category of dike features contributes significantly more to the uncertainty of the system. The highest contributing factors are the dike height, the critical velocity, and the coefficient of seaward slope roughness. These results underline the importance of good dike characterization in order to improve the predictability of return period estimations. The obtained return periods have been confirmed by current in situ observations, but the uncertainty increases for the most severe events due to the lack of long-term data.","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"43 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/nhess-23-3111-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The study aims to provide a complete analysis framework applied to an earthen dike located in Camargue, France. This dike is regularly submitted to erosion on the landward slope that needs to be repaired. Improving the resilience of the dike calls for a reliable model of damage frequency. The developed system is a combination of copula theory, empirical wave propagation, and overtopping equations as well as a global sensitivity analysis in order to provide the return period of erosion damage on a set dike while also providing recommendations in order for the dike to be reinforced as well as the model to be self-improved. The global sensitivity analysis requires one to calculate a high number of return periods over random observations of the tested parameters. This gives a distribution of the return periods, providing a more general approach to the behavior of the dike. The results show a return period peak around the 2-year mark, close to reported observation. With the distribution being skewed, the mean value is higher and is thus less reliable as a measure of dike safety. The results of the global sensitivity analysis show that no particular category of dike features contributes significantly more to the uncertainty of the system. The highest contributing factors are the dike height, the critical velocity, and the coefficient of seaward slope roughness. These results underline the importance of good dike characterization in order to improve the predictability of return period estimations. The obtained return periods have been confirmed by current in situ observations, but the uncertainty increases for the most severe events due to the lack of long-term data.
法国南部土质防洪堤向陆坡对波浪漫溢侵蚀的敏感性分析
摘要该研究旨在提供一个完整的分析框架,应用于位于法国卡马尔格的土坝。这条堤坝经常受到向陆斜坡的侵蚀,需要修复。提高堤防的恢复能力需要一个可靠的损伤频率模型。该系统结合了copula理论、经验波传播和过顶方程以及全局敏感性分析,提供了一组堤防侵蚀损伤的回归期,同时也为堤防加固提供了建议,并对模型进行了自我改进。全局敏感性分析要求在测试参数的随机观测值上计算大量的回归周期。这给出了回归周期的分布,为堤防的行为提供了更一般的方法。结果显示,在2年左右出现了一个回归期高峰,与报道的观察结果接近。由于分布偏斜,平均值较高,因此作为堤防安全措施的可靠性较差。全局敏感性分析结果表明,没有哪一类堤防特征对系统的不确定性贡献更大。堤高、临界流速和向海坡粗糙度系数是影响最大的因素。这些结果强调了为了提高回归期估计的可预测性,良好的堤防特征的重要性。目前的现场观测证实了所获得的返回期,但由于缺乏长期数据,最严重的事件的不确定性增加了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Hazards and Earth System Sciences
Natural Hazards and Earth System Sciences 地学-地球科学综合
CiteScore
7.60
自引率
6.50%
发文量
192
审稿时长
3.8 months
期刊介绍: Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信