Fast Calibration for Computer Models with Massive Physical Observations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shurui Lv, Jun Yu, Yan Wang, Jiang Du
{"title":"Fast Calibration for Computer Models with Massive Physical Observations","authors":"Shurui Lv, Jun Yu, Yan Wang, Jiang Du","doi":"10.1137/22m153673x","DOIUrl":null,"url":null,"abstract":"Computer model calibration is a crucial step in building a reliable computer model. In the face of massive physical observations, a fast estimation of the calibration parameters is urgently needed. To alleviate the computational burden, we design a two-step algorithm to estimate the calibration parameters by employing the subsampling techniques. Compared with the current state-of-the-art calibration methods, the complexity of the proposed algorithm is greatly reduced without sacrificing too much accuracy. We prove the consistency and asymptotic normality of the proposed estimator. The form of the variance of the proposed estimation is also presented, which provides a natural way to quantify the uncertainty of the calibration parameters. The obtained results of two numerical simulations and two real-case studies demonstrate the advantages of the proposed method.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m153673x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Computer model calibration is a crucial step in building a reliable computer model. In the face of massive physical observations, a fast estimation of the calibration parameters is urgently needed. To alleviate the computational burden, we design a two-step algorithm to estimate the calibration parameters by employing the subsampling techniques. Compared with the current state-of-the-art calibration methods, the complexity of the proposed algorithm is greatly reduced without sacrificing too much accuracy. We prove the consistency and asymptotic normality of the proposed estimator. The form of the variance of the proposed estimation is also presented, which provides a natural way to quantify the uncertainty of the calibration parameters. The obtained results of two numerical simulations and two real-case studies demonstrate the advantages of the proposed method.
具有大量物理观测的计算机模型的快速校准
计算机模型标定是建立可靠的计算机模型的关键步骤。面对大量的物理观测,迫切需要快速估计校准参数。为了减轻计算负担,我们设计了一种采用次采样技术的两步算法来估计校准参数。与目前最先进的标定方法相比,在不牺牲太多精度的情况下,大大降低了算法的复杂性。我们证明了所提估计量的相合性和渐近正态性。给出了所提估计的方差形式,为标定参数的不确定度提供了一种自然的量化方法。两个数值模拟和两个实际案例的结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信