{"title":"Fractional Laplacian – Quadrature Rules for Singular Double Integrals in 3D","authors":"Bernd Feist, Mario Bebendorf","doi":"10.1515/cmam-2022-0159","DOIUrl":null,"url":null,"abstract":"Abstract In this article, quadrature rules for the efficient computation of the stiffness matrix for the fractional Laplacian in three dimensions are presented. These rules are based on the Duffy transformation, which is a common tool for singularity removal. Here, this transformation is adapted to the needs of the fractional Laplacian in three dimensions. The integrals resulting from this Duffy transformation are regular integrals over less-dimensional domains. We present bounds on the number of Gauss points to guarantee error estimates which are of the same order of magnitude as the finite element error. The methods presented in this article can easily be adapted to other singular double integrals in three dimensions with algebraic singularities.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"159 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0159","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, quadrature rules for the efficient computation of the stiffness matrix for the fractional Laplacian in three dimensions are presented. These rules are based on the Duffy transformation, which is a common tool for singularity removal. Here, this transformation is adapted to the needs of the fractional Laplacian in three dimensions. The integrals resulting from this Duffy transformation are regular integrals over less-dimensional domains. We present bounds on the number of Gauss points to guarantee error estimates which are of the same order of magnitude as the finite element error. The methods presented in this article can easily be adapted to other singular double integrals in three dimensions with algebraic singularities.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.