Fractional Laplacian – Quadrature Rules for Singular Double Integrals in 3D

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Bernd Feist, Mario Bebendorf
{"title":"Fractional Laplacian – Quadrature Rules for Singular Double Integrals in 3D","authors":"Bernd Feist, Mario Bebendorf","doi":"10.1515/cmam-2022-0159","DOIUrl":null,"url":null,"abstract":"Abstract In this article, quadrature rules for the efficient computation of the stiffness matrix for the fractional Laplacian in three dimensions are presented. These rules are based on the Duffy transformation, which is a common tool for singularity removal. Here, this transformation is adapted to the needs of the fractional Laplacian in three dimensions. The integrals resulting from this Duffy transformation are regular integrals over less-dimensional domains. We present bounds on the number of Gauss points to guarantee error estimates which are of the same order of magnitude as the finite element error. The methods presented in this article can easily be adapted to other singular double integrals in three dimensions with algebraic singularities.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"159 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0159","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, quadrature rules for the efficient computation of the stiffness matrix for the fractional Laplacian in three dimensions are presented. These rules are based on the Duffy transformation, which is a common tool for singularity removal. Here, this transformation is adapted to the needs of the fractional Laplacian in three dimensions. The integrals resulting from this Duffy transformation are regular integrals over less-dimensional domains. We present bounds on the number of Gauss points to guarantee error estimates which are of the same order of magnitude as the finite element error. The methods presented in this article can easily be adapted to other singular double integrals in three dimensions with algebraic singularities.
三维奇异二重积分的分数阶拉普拉斯-正交规则
摘要本文给出了三维分数阶拉普拉斯矩阵刚度矩阵有效计算的正交规则。这些规则是基于Duffy变换的,这是一种常见的奇点去除工具。这里,这个变换适应了三维空间中分数阶拉普拉斯函数的需要。由达菲变换得到的积分是小维域上的正则积分。我们给出高斯点数目的界限,以保证误差估计与有限元误差具有相同的数量级。本文提出的方法可以很容易地适用于其他具有代数奇异性的三维奇异二重积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信