Bayesian Inference with Projected Densities

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jasper M. Everink, Yiqiu Dong, Martin S. Andersen
{"title":"Bayesian Inference with Projected Densities","authors":"Jasper M. Everink, Yiqiu Dong, Martin S. Andersen","doi":"10.1137/22m150695x","DOIUrl":null,"url":null,"abstract":"Constraints are a natural choice for prior information in Bayesian inference. In various applications, the parameters of interest lie on the boundary of the constraint set. In this paper, we use a method that implicitly defines a constrained prior such that the posterior assigns positive probability to the boundary of the constraint set. We show that by projecting posterior mass onto the constraint set, we obtain a new posterior with a rich probabilistic structure on the boundary of that set. If the original posterior is a Gaussian, then such a projection can be done efficiently. We apply the method to Bayesian linear inverse problems, in which case samples can be obtained by repeatedly solving constrained least squares problems, similar to a MAP estimate, but with perturbations in the data. When combined into a Bayesian hierarchical model and the constraint set is a polyhedral cone, we can derive a Gibbs sampler to efficiently sample from the hierarchical model. To show the effect of projecting the posterior, we applied the method to deblurring and computed tomography examples.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m150695x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Constraints are a natural choice for prior information in Bayesian inference. In various applications, the parameters of interest lie on the boundary of the constraint set. In this paper, we use a method that implicitly defines a constrained prior such that the posterior assigns positive probability to the boundary of the constraint set. We show that by projecting posterior mass onto the constraint set, we obtain a new posterior with a rich probabilistic structure on the boundary of that set. If the original posterior is a Gaussian, then such a projection can be done efficiently. We apply the method to Bayesian linear inverse problems, in which case samples can be obtained by repeatedly solving constrained least squares problems, similar to a MAP estimate, but with perturbations in the data. When combined into a Bayesian hierarchical model and the constraint set is a polyhedral cone, we can derive a Gibbs sampler to efficiently sample from the hierarchical model. To show the effect of projecting the posterior, we applied the method to deblurring and computed tomography examples.
投影密度下的贝叶斯推断
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信