Computing eigenvalues of the Laplacian on rough domains

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Frank Rösler, Alexei Stepanenko
{"title":"Computing eigenvalues of the Laplacian on rough domains","authors":"Frank Rösler, Alexei Stepanenko","doi":"10.1090/mcom/3827","DOIUrl":null,"url":null,"abstract":"We prove a general Mosco convergence theorem for bounded Euclidean domains satisfying a set of mild geometric hypotheses. For bounded domains, this notion implies norm-resolvent convergence for the Dirichlet Laplacian which in turn ensures spectral convergence. A key element of the proof is the development of a novel, explicit Poincaré-type inequality. These results allow us to construct a universal algorithm capable of computing the eigenvalues of the Dirichlet Laplacian on a wide class of rough domains. Many domains with fractal boundaries, such as the Koch snowflake and certain filled Julia sets, are included among this class. Conversely, we construct a counterexample showing that there does not exist a universal algorithm of the same type capable of computing the eigenvalues of the Dirichlet Laplacian on an arbitrary bounded domain.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a general Mosco convergence theorem for bounded Euclidean domains satisfying a set of mild geometric hypotheses. For bounded domains, this notion implies norm-resolvent convergence for the Dirichlet Laplacian which in turn ensures spectral convergence. A key element of the proof is the development of a novel, explicit Poincaré-type inequality. These results allow us to construct a universal algorithm capable of computing the eigenvalues of the Dirichlet Laplacian on a wide class of rough domains. Many domains with fractal boundaries, such as the Koch snowflake and certain filled Julia sets, are included among this class. Conversely, we construct a counterexample showing that there does not exist a universal algorithm of the same type capable of computing the eigenvalues of the Dirichlet Laplacian on an arbitrary bounded domain.
粗糙域上拉普拉斯特征值的计算
我们证明了满足一组温和几何假设的有界欧几里得域的一般Mosco收敛定理。对于有界域,这个概念意味着狄利克雷拉普拉斯算子的范数解析收敛,从而保证谱收敛。证明的一个关键要素是发展出一种新颖的、明确的庞加莱姆氏不等式。这些结果使我们能够构造一种通用算法,能够在广泛的粗糙域上计算狄利克雷拉普拉斯算子的特征值。许多具有分形边界的域,如Koch雪花和某些填充Julia集,都包括在这一类中。相反,我们构造了一个反例,表明不存在能够在任意有界域上计算狄利克雷拉普拉斯特征值的同类型的通用算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信