REGULARIZING EFFECT IN SINGULAR SEMILINEAR PROBLEMS

IF 1.6 3区 数学 Q1 MATHEMATICS
José Carmona, Antonio J. Martínez Aparicio, Pedro J. Martínez-Aparicio Martínez-Aparicio, Miguel Martínez-Teruel
{"title":"REGULARIZING EFFECT IN SINGULAR SEMILINEAR PROBLEMS","authors":"José Carmona, Antonio J. Martínez Aparicio, Pedro J. Martínez-Aparicio Martínez-Aparicio, Miguel Martínez-Teruel","doi":"10.3846/mma.2023.18616","DOIUrl":null,"url":null,"abstract":"We analyze how different relations in the lower order terms lead to the same regularizing effect on singular problems whose model is in Ω, u = 0 on ∂Ω, where Ω is a bounded open set of is a nonnegative function in L1(Ω) and g(x,s) is a Carathéodory function. In a framework where no solution is expected, we prove its existence (regularizing effect) whenever the datum f interacts conveniently either with the boundary of the domain or with the lower order term.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mma.2023.18616","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze how different relations in the lower order terms lead to the same regularizing effect on singular problems whose model is in Ω, u = 0 on ∂Ω, where Ω is a bounded open set of is a nonnegative function in L1(Ω) and g(x,s) is a Carathéodory function. In a framework where no solution is expected, we prove its existence (regularizing effect) whenever the datum f interacts conveniently either with the boundary of the domain or with the lower order term.
奇异半线性问题的正则化效应
我们分析了低阶项中的不同关系如何在奇异问题上导致相同的正则化效果,其模型在Ω, u = 0在∂Ω上,其中Ω是L1(Ω)中的有界开集,是一个非负函数,g(x,s)是一个carathsamodory函数。在不期望解的框架中,只要基准f与域边界或与低阶项方便地相互作用,我们就证明了它的存在性(正则化效应)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信