Quantum Thermometry with Single Molecules in Nanoprobes

IF 11 Q1 PHYSICS, APPLIED
V. Esteso, R. Duquennoy, R.C. Ng, M. Colautti, P. Lombardi, G. Arregui, E. Chavez-Angel, C.M. Sotomayor-Torres, P.D. Garcia, M. Hilke, C. Toninelli
{"title":"Quantum Thermometry with Single Molecules in Nanoprobes","authors":"V. Esteso, R. Duquennoy, R.C. Ng, M. Colautti, P. Lombardi, G. Arregui, E. Chavez-Angel, C.M. Sotomayor-Torres, P.D. Garcia, M. Hilke, C. Toninelli","doi":"10.1103/prxquantum.4.040314","DOIUrl":null,"url":null,"abstract":"An understanding of heat transport is relevant to developing efficient strategies for thermal management in areas of study such as microelectronics, as well as for fundamental science purposes. However, the measurement of temperatures in nanostructured environments and in cryogenic conditions remains a challenging task, requiring both high sensitivity and noninvasive approaches. Here, we present a portable nanothermometer based on a molecular two-level quantum system that operates in the (3–20)-K temperature range, with temperatures and spatial resolutions on the order of millikelvins and micrometers, respectively. We validate the performance of this molecular thermometer by estimating the thermal conductivity of a nanopatterned silicon membrane, where we find a quadratic temperature dependence. In addition, we demonstrate two-dimensional temperature mapping via the simultaneous spectroscopy of multiple probes deposited onto such a suspended membrane. Overall, these results demonstrate the unique potential of the proposed molecular thermometer to explore thermal properties with submicron accuracy and unveil related phenomena manifested at cryogenic temperatures.2 MoreReceived 22 February 2023Revised 3 July 2023Accepted 2 August 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040314Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAtomic & molecular processes in external fieldsMolecular spectraSpontaneous emissionAtomic, Molecular & Optical","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"63 1","pages":"0"},"PeriodicalIF":11.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.4.040314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An understanding of heat transport is relevant to developing efficient strategies for thermal management in areas of study such as microelectronics, as well as for fundamental science purposes. However, the measurement of temperatures in nanostructured environments and in cryogenic conditions remains a challenging task, requiring both high sensitivity and noninvasive approaches. Here, we present a portable nanothermometer based on a molecular two-level quantum system that operates in the (3–20)-K temperature range, with temperatures and spatial resolutions on the order of millikelvins and micrometers, respectively. We validate the performance of this molecular thermometer by estimating the thermal conductivity of a nanopatterned silicon membrane, where we find a quadratic temperature dependence. In addition, we demonstrate two-dimensional temperature mapping via the simultaneous spectroscopy of multiple probes deposited onto such a suspended membrane. Overall, these results demonstrate the unique potential of the proposed molecular thermometer to explore thermal properties with submicron accuracy and unveil related phenomena manifested at cryogenic temperatures.2 MoreReceived 22 February 2023Revised 3 July 2023Accepted 2 August 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040314Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAtomic & molecular processes in external fieldsMolecular spectraSpontaneous emissionAtomic, Molecular & Optical

Abstract Image

单分子纳米探针的量子测温
对热传输的理解与开发诸如微电子学等研究领域的有效热管理策略以及基础科学目的相关。然而,在纳米结构环境和低温条件下的温度测量仍然是一项具有挑战性的任务,需要高灵敏度和非侵入性方法。在这里,我们提出了一种基于分子二能级量子系统的便携式纳米温度计,其工作温度范围为(3-20)k,温度和空间分辨率分别为毫开尔文和微米数量级。我们通过估计纳米图案硅膜的导热性来验证这种分子温度计的性能,在那里我们发现了二次温度依赖关系。此外,我们通过沉积在这种悬浮膜上的多个探针的同时光谱证明了二维温度映射。总的来说,这些结果证明了所提出的分子温度计在亚微米精度探索热性质和揭示低温下表现出的相关现象方面的独特潜力根据知识共享署名4.0国际许可协议,美国物理学会于2023年8月2日接受doi:https://doi.org/10.1103/PRXQuantum.4.040314Published。这项工作的进一步分发必须保持作者的归属和已发表文章的标题,期刊引用和DOI。发表于美国物理学会物理学科标题(PhySH)研究领域外场原子与分子过程分子光谱自发发射原子、分子与光学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信