Dynamic spatiotemporal ARCH models

IF 1.5 3区 经济学 Q2 ECONOMICS
Philipp Otto, Osman Doğan, Süleyman Taşpınar
{"title":"Dynamic spatiotemporal ARCH models","authors":"Philipp Otto, Osman Doğan, Süleyman Taşpınar","doi":"10.1080/17421772.2023.2254817","DOIUrl":null,"url":null,"abstract":"ABSTRACTGeo-referenced data are characterised by an inherent spatial dependence due to geographical proximity. In this paper, we introduce a dynamic spatiotemporal autoregressive conditional heteroscedasticity (ARCH) process to describe the effects of (i) the log-squared time-lagged outcome variable, the temporal effect, (ii) the spatial lag of the log-squared outcome variable, the spatial effect, and (iii) the spatiotemporal effect on the volatility of an outcome variable. We derive a generalised method of moments (GMM) estimator based on the linear and quadratic moment conditions. We show the consistency and asymptotic normality of the GMM estimator. After studying the finite-sample performance in simulations, the model is demonstrated by analysing monthly log-returns of condominium prices in Berlin from 1995 to 2015, for which we found significant volatility spillovers.Preprint: This paper is based on the preprint arXiv:2202.13856KEYWORDS: Spatial ARCHGMMvolatility clusteringvolatilityhouse price returnslocal real-estate marketJEL: C13C23P25R31 DISCLOSURE STATEMENTNo potential conflict of interest was reported by the author(s).Notes1 Note that the matrix equation ABC=D, where D, A, B, and C are suitable matrices, can be expressed as vec(D)=(C′⊗A)vec(B), where vec(B) denotes the vectorisation of the matrix B (Abadir & Magnus, Citation2005, p. 282). This property can be applied to (U1∗,U2∗,…,UT−1∗)=(U1,U2,…,UT)FT,T−1 by setting D=(U1∗,U2∗,…,UT−1∗), C=FT,T−1, B=(U1,U2,…,UT) and A=In.2 In applying Lemma 1 in the Appendix in the supplemental data online, we use the fact that tr(A′B)=vec′(A)vec(B)=vec′(B)vec(A), where A and B are any two N×N matrices.3 The explicit forms of D1N and D2N are given in Section C of the Appendix.4 Note that when t=1, we may simply use H1=c1((In−1T−1∑h=1T−1Ah)Y0∗−1T−1∑r=1T−1(∑h=0T−r−1Ah)S−1(Xrβ0+αr,01n)).5 Note that when T is large, μ~0=(μ0+μϵ1n) can be estimated by μ~ˆN=1T∑t=1T(ϑˆt−1n1n′ϑˆt1n).","PeriodicalId":47008,"journal":{"name":"Spatial Economic Analysis","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Economic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17421772.2023.2254817","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACTGeo-referenced data are characterised by an inherent spatial dependence due to geographical proximity. In this paper, we introduce a dynamic spatiotemporal autoregressive conditional heteroscedasticity (ARCH) process to describe the effects of (i) the log-squared time-lagged outcome variable, the temporal effect, (ii) the spatial lag of the log-squared outcome variable, the spatial effect, and (iii) the spatiotemporal effect on the volatility of an outcome variable. We derive a generalised method of moments (GMM) estimator based on the linear and quadratic moment conditions. We show the consistency and asymptotic normality of the GMM estimator. After studying the finite-sample performance in simulations, the model is demonstrated by analysing monthly log-returns of condominium prices in Berlin from 1995 to 2015, for which we found significant volatility spillovers.Preprint: This paper is based on the preprint arXiv:2202.13856KEYWORDS: Spatial ARCHGMMvolatility clusteringvolatilityhouse price returnslocal real-estate marketJEL: C13C23P25R31 DISCLOSURE STATEMENTNo potential conflict of interest was reported by the author(s).Notes1 Note that the matrix equation ABC=D, where D, A, B, and C are suitable matrices, can be expressed as vec(D)=(C′⊗A)vec(B), where vec(B) denotes the vectorisation of the matrix B (Abadir & Magnus, Citation2005, p. 282). This property can be applied to (U1∗,U2∗,…,UT−1∗)=(U1,U2,…,UT)FT,T−1 by setting D=(U1∗,U2∗,…,UT−1∗), C=FT,T−1, B=(U1,U2,…,UT) and A=In.2 In applying Lemma 1 in the Appendix in the supplemental data online, we use the fact that tr(A′B)=vec′(A)vec(B)=vec′(B)vec(A), where A and B are any two N×N matrices.3 The explicit forms of D1N and D2N are given in Section C of the Appendix.4 Note that when t=1, we may simply use H1=c1((In−1T−1∑h=1T−1Ah)Y0∗−1T−1∑r=1T−1(∑h=0T−r−1Ah)S−1(Xrβ0+αr,01n)).5 Note that when T is large, μ~0=(μ0+μϵ1n) can be estimated by μ~ˆN=1T∑t=1T(ϑˆt−1n1n′ϑˆt1n).
动态时空ARCH模型
摘要地理参考数据由于地理邻近性而具有固有的空间依赖性。在本文中,我们引入了一个动态时空自回归条件异方差(ARCH)过程来描述(i)对数平方滞后的结果变量,时间效应,(ii)对数平方结果变量的空间滞后,空间效应,以及(iii)时空效应对结果变量波动性的影响。给出了基于线性和二次矩条件的广义矩估计方法。我们证明了GMM估计量的相合性和渐近正态性。在模拟研究了有限样本性能之后,通过分析1995年至2015年柏林公寓价格的月度对数回报来证明该模型,我们发现了显著的波动溢出效应。预印本:本文基于预印本arXiv:2202.13856。关键词:空间archgmm波动率聚类波动率房价回报当地房地产市场披露声明作者未报告潜在利益冲突。注1注意,矩阵方程ABC=D,其中D、A、B和C是合适的矩阵,可以表示为vec(D)=(C′⊗A)vec(B),其中vec(B)表示矩阵B的矢量化(Abadir & Magnus, Citation2005, p. 282)。这个性质可以应用于(U1∗U2∗,…,UT−1∗)= (U1, U2,…,UT)英国《金融时报》,通过设置D = T−1 (U1∗、U2∗…,UT−1∗),C =英尺,T−1,B = (U1, U2,…,UT)和一个= In.2在在线补充资料中应用附录引理1时,我们使用了tr(A ' B)=vec ' (A)vec(B)=vec ' (B)vec(A),其中A和B是任意两个N×N矩阵注意,当t=1时,我们可以简单地使用H1=c1((in - 1T−1∑h=1T−1Ah)Y0∗- 1T−1∑r=1T−1(∑h=0T−r−1Ah)S−1(Xrβ0+αr,01n))需要注意的是,当T较大时,μ~0=(μ0+μϵ1n)可由μ~ ̄N=1T∑T =1T( ̄ ̄T−1n1n′ ̄ ̄t1n)来估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
21.70%
发文量
33
期刊介绍: Spatial Economic Analysis is a pioneering economics journal dedicated to the development of theory and methods in spatial economics, published by two of the world"s leading learned societies in the analysis of spatial economics, the Regional Studies Association and the British and Irish Section of the Regional Science Association International. A spatial perspective has become increasingly relevant to our understanding of economic phenomena, both on the global scale and at the scale of cities and regions. The growth in international trade, the opening up of emerging markets, the restructuring of the world economy along regional lines, and overall strategic and political significance of globalization, have re-emphasised the importance of geographical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信