Optimization of a quantum cascade laser cavity for single-spatial-mode operation via machine learning

S. A. Jacobs, J. D. Kirch, Y. Hu, S. Suri, B. Knipfer, Z. Yu, D. Botez, R. Marsland, L. J. Mawst
{"title":"Optimization of a quantum cascade laser cavity for single-spatial-mode operation via machine learning","authors":"S. A. Jacobs, J. D. Kirch, Y. Hu, S. Suri, B. Knipfer, Z. Yu, D. Botez, R. Marsland, L. J. Mawst","doi":"10.1063/5.0158204","DOIUrl":null,"url":null,"abstract":"Neural networks, trained with the ADAM algorithm followed by a globally convergent modification to Newton’s method, are developed to predict the threshold gain of the fundamental and first higher-order modes as functions of the refractive-index profile in a quantum cascade laser cavity. The networks are used to optimize the design of a refractive-index profile that provides essentially single-spatial-mode performance in a nominally multi-moded cavity by maximizing the threshold-gain differential between the modes. The use of neural networks allows the optimization to be performed in seconds, instead of days or weeks which would be required if Maxwell’s equations were repeatedly solved to obtain the threshold gains.","PeriodicalId":229559,"journal":{"name":"APL Machine Learning","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0158204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks, trained with the ADAM algorithm followed by a globally convergent modification to Newton’s method, are developed to predict the threshold gain of the fundamental and first higher-order modes as functions of the refractive-index profile in a quantum cascade laser cavity. The networks are used to optimize the design of a refractive-index profile that provides essentially single-spatial-mode performance in a nominally multi-moded cavity by maximizing the threshold-gain differential between the modes. The use of neural networks allows the optimization to be performed in seconds, instead of days or weeks which would be required if Maxwell’s equations were repeatedly solved to obtain the threshold gains.
基于机器学习的单空间模式操作量子级联激光腔的优化
采用ADAM算法训练神经网络,然后对牛顿方法进行全局收敛修正,开发了用于预测量子级联激光腔中基本和第一高阶模式的阈值增益作为折射率剖面的函数。该网络用于优化折射率剖面的设计,通过最大化模式之间的阈值增益差,在名义上的多模腔中提供本质上的单空间模式性能。使用神经网络可以在几秒钟内完成优化,而不是重复求解麦克斯韦方程组以获得阈值增益所需的几天或几周。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信