Abelian groups from random hypergraphs

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Andrew Newman
{"title":"Abelian groups from random hypergraphs","authors":"Andrew Newman","doi":"10.1017/s0963548323000056","DOIUrl":null,"url":null,"abstract":"Abstract For a $k$ -uniform hypergraph $\\mathcal{H}$ on vertex set $\\{1, \\ldots, n\\}$ we associate a particular signed incidence matrix $M(\\mathcal{H})$ over the integers. For $\\mathcal{H} \\sim \\mathcal{H}_k(n, p)$ an Erdős–Rényi random $k$ -uniform hypergraph, ${\\mathrm{coker}}(M(\\mathcal{H}))$ is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for $p = \\omega (1/n^{k - 1})$ , ${\\mathrm{coker}}(M(\\mathcal{H}))$ is torsion-free.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000056","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For a $k$ -uniform hypergraph $\mathcal{H}$ on vertex set $\{1, \ldots, n\}$ we associate a particular signed incidence matrix $M(\mathcal{H})$ over the integers. For $\mathcal{H} \sim \mathcal{H}_k(n, p)$ an Erdős–Rényi random $k$ -uniform hypergraph, ${\mathrm{coker}}(M(\mathcal{H}))$ is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for $p = \omega (1/n^{k - 1})$ , ${\mathrm{coker}}(M(\mathcal{H}))$ is torsion-free.
随机超图中的阿贝尔群
摘要对于顶点集$\{1, \ldots, n\}$上的一个$k$ -一致超图$\mathcal{H}$,我们在整数上关联了一个特殊的有符号关联矩阵$M(\mathcal{H})$。对于$\mathcal{H} \sim \mathcal{H}_k(n, p)$和Erdős-Rényi随机$k$ -均匀超图,${\mathrm{coker}}(M(\mathcal{H}))$是随机阿贝尔群的模型。从随机简单复合体的研究推测的动机,我们表明,对于$p = \omega (1/n^{k - 1})$, ${\mathrm{coker}}(M(\mathcal{H}))$是无扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信