Resilient Si 3N 4@SiO 2 nanowire aerogel for high-temperature electromagnetic wave transparency and thermal insulation

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Wei Zhang, Lei Su, De Lu, Kang Peng, Min Niu, Lei Zhuang, Jian Feng, Hongjie Wang
{"title":"Resilient Si <sub>3</sub>N <sub>4</sub>@SiO <sub>2</sub> nanowire aerogel for high-temperature electromagnetic wave transparency and thermal insulation","authors":"Wei Zhang, Lei Su, De Lu, Kang Peng, Min Niu, Lei Zhuang, Jian Feng, Hongjie Wang","doi":"10.26599/jac.2023.9220813","DOIUrl":null,"url":null,"abstract":"&nbsp;With the development of aerospace technology, the Mach number of aircraft continues to increase, which puts forward higher performance requirements for high-temperature wave-transparent materials. Silicon nitride has excellent mechanical properties, high-temperature stability, and oxidation resistance, but its brittleness and high dielectric constant impede its practical applications. Herein, by employing a template-assisted precursor pyrolysis method, we prepared a class of Si<sub>3</sub>N<sub>4</sub>@SiO<sub>2</sub> nanowires aerogels (Si<sub>3</sub>N<sub>4</sub>@SiO<sub>2</sub> NWAGs) that are assembled by Si<sub>3</sub>N<sub>4</sub>@SiO<sub>2</sub> nanowires with diameters ranging from 386 nm to 631 nm. The Si<sub>3</sub>N<sub>4</sub>@SiO<sub>2</sub> NWAGs have low densities (12-31 mg·cm<sup>-3</sup>), a specific surface aerogel of 4.13 m<sup>2</sup>g<sup>-1</sup>, and an average pore size of 68.9 μm. Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60% compressive strain and good fatigue resistance even when being compressed for 100 times at a set strain of 20%. The aerogels also show good thermal insulation performance (0.032 W·m<sup>-1</sup>K<sup>-1</sup> at room temperature), ablation resistance (butane blow torch), and high-temperature stability (maximum service temperature in the air over 1200 °C). The dielectric constant and loss of the aerogels are 1.02-1.06 and 4.3× 10<sup>-5</sup>-1.4×10<sup>-3</sup> at room temperature, respectively. The combination of the good mechanical, thermal, and dielectric properties makes Si<sub>3</sub>N<sub>4</sub>@SiO<sub>2</sub> NWAG a promising ultralight wave-transparent and thermally insulating material for application at high temperatures.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"218 1","pages":"0"},"PeriodicalIF":18.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/jac.2023.9220813","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

 With the development of aerospace technology, the Mach number of aircraft continues to increase, which puts forward higher performance requirements for high-temperature wave-transparent materials. Silicon nitride has excellent mechanical properties, high-temperature stability, and oxidation resistance, but its brittleness and high dielectric constant impede its practical applications. Herein, by employing a template-assisted precursor pyrolysis method, we prepared a class of Si3N4@SiO2 nanowires aerogels (Si3N4@SiO2 NWAGs) that are assembled by Si3N4@SiO2 nanowires with diameters ranging from 386 nm to 631 nm. The Si3N4@SiO2 NWAGs have low densities (12-31 mg·cm-3), a specific surface aerogel of 4.13 m2g-1, and an average pore size of 68.9 μm. Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60% compressive strain and good fatigue resistance even when being compressed for 100 times at a set strain of 20%. The aerogels also show good thermal insulation performance (0.032 W·m-1K-1 at room temperature), ablation resistance (butane blow torch), and high-temperature stability (maximum service temperature in the air over 1200 °C). The dielectric constant and loss of the aerogels are 1.02-1.06 and 4.3× 10-5-1.4×10-3 at room temperature, respectively. The combination of the good mechanical, thermal, and dielectric properties makes Si3N4@SiO2 NWAG a promising ultralight wave-transparent and thermally insulating material for application at high temperatures.
弹性Si 3N 4@SiO 2纳米线气凝胶用于高温电磁波透明和隔热
随着航空航天技术的发展,飞机的马赫数不断提高,这对高温波透明材料提出了更高的性能要求。氮化硅具有优异的力学性能、高温稳定性和抗氧化性,但其脆性和高介电常数阻碍了其实际应用。本文采用模板辅助前驱体热解方法,制备了一类Si3N4@SiO2纳米线气凝胶(Si3N4@SiO2 nwag),该气凝胶由Si3N4@SiO2纳米线组装而成,其直径从386 nm到631 nm不等。Si3N4@SiO2 nwag具有低密度(12 ~ 31 mg·cm-3),比表面气凝胶为4.13 mg2 -1,平均孔径为68.9 μm。力学性能表征表明,在60%的压缩应变下,气凝胶具有可逆的可压缩性,即使在20%的设定应变下压缩100次,也具有良好的抗疲劳性能。该气凝胶还具有良好的保温性能(室温0.032 W·m-1K-1)、耐烧蚀(丁烷喷枪)和高温稳定性(在空气中最高使用温度超过1200℃)。室温下,气凝胶的介电常数为1.02 ~ 1.06,损耗为4.3× 10-5-1.4×10-3。良好的机械、热学和介电性能的结合使Si3N4@SiO2 NWAG成为一种有前途的超光波透明和高温隔热材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信