Magnetic field and dissipation effects on mixed convection viscous fluid flow by a channel in the presence of porous medium and heat generation/absorption phenomenon
Xiao Xin, Y. Masthanaiah, A. Rushikesava, Nainaru Tarakaramu, Sherzod Abdullaev, M. Ijaz Khan, Imen Rashid Bouazzi
{"title":"Magnetic field and dissipation effects on mixed convection viscous fluid flow by a channel in the presence of porous medium and heat generation/absorption phenomenon","authors":"Xiao Xin, Y. Masthanaiah, A. Rushikesava, Nainaru Tarakaramu, Sherzod Abdullaev, M. Ijaz Khan, Imen Rashid Bouazzi","doi":"10.1002/zamm.202300625","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we investigate the phenomenon of mixed convection in viscous fluid flow by a vertical channel, considering the presence of magneto‐hydro‐dynamics and porosity. Mixed convection occurs when both buoyancy forces and external forces, such as pumps or fans, influence the flow behavior. Understanding and accurately predicting mixed convection is crucial for optimizing heat exchanger design and performance. To model the temperature equation, we utilize the concept of the first law of thermodynamics. Additionally, we incorporate effects such as Joule heating, heat generation, and radiative heat flux in the energy equation modeling. The resulting physical liquid equations are solved using the shooting technique with the RKF (Runge–Kutta–Fehlberg) scheme. We present graphical representations of the flow variables, discussing their behavior in detail. The introduction provides an overview of the paper's roadmap, while the conclusion highlights the main and significant results obtained from our study. We found that, the temperature is more when liquid motion in between channel for large numerical values of thermal radiation parameter and Reynolds number.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300625","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this study, we investigate the phenomenon of mixed convection in viscous fluid flow by a vertical channel, considering the presence of magneto‐hydro‐dynamics and porosity. Mixed convection occurs when both buoyancy forces and external forces, such as pumps or fans, influence the flow behavior. Understanding and accurately predicting mixed convection is crucial for optimizing heat exchanger design and performance. To model the temperature equation, we utilize the concept of the first law of thermodynamics. Additionally, we incorporate effects such as Joule heating, heat generation, and radiative heat flux in the energy equation modeling. The resulting physical liquid equations are solved using the shooting technique with the RKF (Runge–Kutta–Fehlberg) scheme. We present graphical representations of the flow variables, discussing their behavior in detail. The introduction provides an overview of the paper's roadmap, while the conclusion highlights the main and significant results obtained from our study. We found that, the temperature is more when liquid motion in between channel for large numerical values of thermal radiation parameter and Reynolds number.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.