{"title":"Tensile properties of transversely isotropic closed-cell PVC foam under quasi-static and dynamic loadings","authors":"Yu Tang, Yue Li, Xiongwen Jiang, Jiuzhou Zhao, Geng Zhao, Wenbo Xie, Wei Zhang","doi":"10.1177/10996362231209013","DOIUrl":null,"url":null,"abstract":"The uniaxial tensile mechanical properties of PVC foam considering the effects of strain rate ([Formula: see text]) and anisotropy ([Formula: see text]) have been investigated by quasi-static and dynamic (Split Hopkinson Tensile Bar, SHTB) tests. Combined high-speed camera system and Digital Image Correlation (DIC) technique, the real-time surface strain field of the specimen during the whole tensile process was obtained. On this basis, the macroscopic response and failure mode of PVC foam were investigated. The failure mechanism of PVC foam under tensile loading was revealed through Scanning Electron Microscope (SEM) images on fracture cross-section of loaded specimen. Finally, based on experimental data, a prediction equation on tensile strength of PVC foam considering the effects of strain rate and loading angle (anisotropy) is proposed. Furthermore, a nonlinear constitutive model is developed to describe the uniaxial tensile mechanical properties of PVC foam.","PeriodicalId":16977,"journal":{"name":"Journal of Sandwich Structures and Materials","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10996362231209013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The uniaxial tensile mechanical properties of PVC foam considering the effects of strain rate ([Formula: see text]) and anisotropy ([Formula: see text]) have been investigated by quasi-static and dynamic (Split Hopkinson Tensile Bar, SHTB) tests. Combined high-speed camera system and Digital Image Correlation (DIC) technique, the real-time surface strain field of the specimen during the whole tensile process was obtained. On this basis, the macroscopic response and failure mode of PVC foam were investigated. The failure mechanism of PVC foam under tensile loading was revealed through Scanning Electron Microscope (SEM) images on fracture cross-section of loaded specimen. Finally, based on experimental data, a prediction equation on tensile strength of PVC foam considering the effects of strain rate and loading angle (anisotropy) is proposed. Furthermore, a nonlinear constitutive model is developed to describe the uniaxial tensile mechanical properties of PVC foam.