AI-enabled human capital management (HCM) software adoption using full consistency method (FUCOM): evidence from banking industry

IF 2.1 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Rama Shankar Yadav, Sema Kayapinar Kaya, Abhay Pant, Anurag Tiwari
{"title":"AI-enabled human capital management (HCM) software adoption using full consistency method (FUCOM): evidence from banking industry","authors":"Rama Shankar Yadav, Sema Kayapinar Kaya, Abhay Pant, Anurag Tiwari","doi":"10.1108/gkmc-04-2023-0128","DOIUrl":null,"url":null,"abstract":"Purpose Artificial intelligence (AI)-based human capital management (HCM) software solutions represent a potentially effective way to leverage and streamline a bank’s human resources. However, despite the attractiveness of AI-based HCM solutions to improve banks’ effectiveness, to the best of the authors’ knowledge, there are no current studies that identify critical success factors (CSFs) for adopting AI-based HCM in the banking sector. This study aims to fill this gap by investigating CSFs for adopting AI-based HCM software solutions in the banking sector. Design/methodology/approach Full consistency method methodology and technology–organization–environment, economic and human framework are used for categorizing and ranking CSFs. Findings The study identifies the technological and environmental dimensions as the most and least important dimensions for AI-based HCM adoption in banks. Among specific CSFs, compatible technology facilities, sufficient privacy and security and relative advantages of technology over competing technologies were identified as the most important. Implementation of AI-based HCM solutions requires significant outlays of resources, both human and financial, for banks. Originality/value The study provides bank administrators a set of objective parameters and criterion to evaluate the feasibility of adopting a particular AI-based HCM solution in banks.","PeriodicalId":43718,"journal":{"name":"Global Knowledge Memory and Communication","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Knowledge Memory and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/gkmc-04-2023-0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose Artificial intelligence (AI)-based human capital management (HCM) software solutions represent a potentially effective way to leverage and streamline a bank’s human resources. However, despite the attractiveness of AI-based HCM solutions to improve banks’ effectiveness, to the best of the authors’ knowledge, there are no current studies that identify critical success factors (CSFs) for adopting AI-based HCM in the banking sector. This study aims to fill this gap by investigating CSFs for adopting AI-based HCM software solutions in the banking sector. Design/methodology/approach Full consistency method methodology and technology–organization–environment, economic and human framework are used for categorizing and ranking CSFs. Findings The study identifies the technological and environmental dimensions as the most and least important dimensions for AI-based HCM adoption in banks. Among specific CSFs, compatible technology facilities, sufficient privacy and security and relative advantages of technology over competing technologies were identified as the most important. Implementation of AI-based HCM solutions requires significant outlays of resources, both human and financial, for banks. Originality/value The study provides bank administrators a set of objective parameters and criterion to evaluate the feasibility of adopting a particular AI-based HCM solution in banks.
采用完全一致性方法(FUCOM)的人工智能人力资本管理(HCM)软件采用:来自银行业的证据
基于人工智能(AI)的人力资本管理(HCM)软件解决方案是利用和简化银行人力资源的潜在有效途径。然而,尽管基于人工智能的HCM解决方案具有提高银行效率的吸引力,但据作者所知,目前还没有研究确定银行业采用基于人工智能的HCM的关键成功因素(csf)。本研究旨在通过调查csf在银行业采用基于人工智能的HCM软件解决方案来填补这一空白。设计/方法/方法完全一致性方法和技术-组织-环境,经济和人的框架被用于分类和排序csf。研究发现,技术和环境维度分别是银行采用基于人工智能的HCM最重要和最不重要的维度。在具体的核心服务中,最重要的是兼容的技术设施、足够的隐私和安全,以及技术相对于竞争技术的相对优势。实施基于人工智能的HCM解决方案需要银行投入大量人力和财力资源。独创性/价值本研究为银行管理者提供了一套客观参数和标准,以评估银行采用特定的基于人工智能的HCM解决方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Knowledge Memory and Communication
Global Knowledge Memory and Communication INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.20
自引率
16.70%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信