Second virial coefficient, Boyle temperature and equation of state of van Hove fluids with a downward concavity attractive parabolic-well

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL
Mariano López de Haro, Álvaro Rodríguez Rivas
{"title":"Second virial coefficient, Boyle temperature and equation of state of van Hove fluids with a downward concavity attractive parabolic-well","authors":"Mariano López de Haro, Álvaro Rodríguez Rivas","doi":"10.1080/00268976.2023.2270721","DOIUrl":null,"url":null,"abstract":"AbstractThe second virial coefficient, the Boyle temperature and the equation of state of van Hove fluids with a relatively short ranged attractive parabolic-well of downward concavity are considered. The analytic second virial coefficient for this fluid is obtained explicitly and it is used to compute the Boyle temperature of the fluid as a function of the range of the potential. Further, an equation of state is derived using the second-order thermodynamic perturbation theory of Barker and Henderson in the macroscopic compressibility approximation, with the hard-sphere fluid being the reference fluid. For this latter we profit from the fully analytical expression of the radial distribution function, consistent with the Carnahan-Starling equation state, derived within the so-called rational function approximation method up to a range twice the size of the hard-core diameter. The results for the reduced pressure of the fluid as a function of the packing fraction and two values of the range of the potential well at different temperatures are compared with Monte Carlo simulation data. Estimates of the values of the critical temperature are also provided.KEYWORDS: Van Hove potentialparabolic-well fluidthermodynamic perturbation theoryequation of state Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingOne of us (A.R.R.) acknowledges financial support from Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía through post-doctoral grant no. DC 00316 (PAIDI 2020), co-funded by the EU Fondo Social Europeo (FSE). A.R.-R. also acknowledges support by Ministerio de Ciencias e Innovación (Spain) grant no. PID2021-126348NB-I00.","PeriodicalId":18817,"journal":{"name":"Molecular Physics","volume":"29 11","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00268976.2023.2270721","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractThe second virial coefficient, the Boyle temperature and the equation of state of van Hove fluids with a relatively short ranged attractive parabolic-well of downward concavity are considered. The analytic second virial coefficient for this fluid is obtained explicitly and it is used to compute the Boyle temperature of the fluid as a function of the range of the potential. Further, an equation of state is derived using the second-order thermodynamic perturbation theory of Barker and Henderson in the macroscopic compressibility approximation, with the hard-sphere fluid being the reference fluid. For this latter we profit from the fully analytical expression of the radial distribution function, consistent with the Carnahan-Starling equation state, derived within the so-called rational function approximation method up to a range twice the size of the hard-core diameter. The results for the reduced pressure of the fluid as a function of the packing fraction and two values of the range of the potential well at different temperatures are compared with Monte Carlo simulation data. Estimates of the values of the critical temperature are also provided.KEYWORDS: Van Hove potentialparabolic-well fluidthermodynamic perturbation theoryequation of state Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingOne of us (A.R.R.) acknowledges financial support from Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía through post-doctoral grant no. DC 00316 (PAIDI 2020), co-funded by the EU Fondo Social Europeo (FSE). A.R.-R. also acknowledges support by Ministerio de Ciencias e Innovación (Spain) grant no. PID2021-126348NB-I00.
二阶维里系数、波义耳温度和下凹吸引抛物井van Hove流体的状态方程
摘要考虑了具有较短距离向下凹性吸引抛物井的van Hove流体的二阶维里系数、波义耳温度和状态方程。明确地得到了该流体的解析二次维里系数,并用它来计算流体的波义耳温度作为势范围的函数。进一步,利用Barker和Henderson的二阶热力学摄动理论,以硬球流体为参考流体,导出了宏观可压缩性近似下的状态方程。对于后者,我们受益于径向分布函数的完全解析表达式,与Carnahan-Starling方程状态一致,在所谓的有理函数近似方法中导出,直至硬核直径大小的两倍。在不同温度下,流体的减压随填料分数的变化,以及势井范围的两个值与蒙特卡罗模拟数据进行了比较。还提供了临界温度值的估计。关键词:Van Hove势抛物井流体热力学微扰理论状态方程披露声明作者未报告潜在的利益冲突。其他信息资助我们之一(A.R.R.)承认Consejería de Transformación Económica, Industria, conciciento和universsidades de la Junta de Andalucía的财政支持,博士后资助号为:DC 00316 (PAIDI 2020),由欧盟社会欧洲基金会(FSE)共同资助。A.R.-R。还感谢科学部长Innovación(西班牙)的支持。pid2021 - 126348 - nb - i00。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Physics
Molecular Physics 物理-物理:原子、分子和化学物理
CiteScore
3.60
自引率
5.90%
发文量
269
审稿时长
2 months
期刊介绍: Molecular Physics is a well-established international journal publishing original high quality papers in chemical physics and physical chemistry. The journal covers all experimental and theoretical aspects of molecular science, from electronic structure, molecular dynamics, spectroscopy and reaction kinetics to condensed matter, surface science, and statistical mechanics of simple and complex fluids. Contributions include full papers, preliminary communications, research notes and invited topical review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信