Ian Smail, Ugnė Dudzevičiūtė, Mark Gurwell, Giovanni G. Fazio, S. P. Willner, A. M. Swinbank, Vinodiran Arumugam, Jake Summers, Seth H. Cohen, Rolf A. Jansen, Rogier A. Windhorst, Ashish Meena, Adi Zitrin, William C. Keel, Cheng Cheng, Dan Coe, Christopher J. Conselice, Jordan C. J. D’Silva, Simon P. Driver, Brenda Frye, Norman A. Grogin, Anton M. Koekemoer, Madeline A. Marshall, Mario Nonino, Nor Pirzkal, Aaron Robotham, Michael J. Rutkowski, Russell E. Ryan Jr., Scott Tompkins, Christopher N. A. Willmer, Haojing Yan, Thomas J. Broadhurst, José M. Diego, Patrick Kamieneski, Min Yun
{"title":"Hidden Giants in JWST's PEARLS: An Ultramassive z = 4.26 Submillimeter Galaxy that Is Invisible to HST","authors":"Ian Smail, Ugnė Dudzevičiūtė, Mark Gurwell, Giovanni G. Fazio, S. P. Willner, A. M. Swinbank, Vinodiran Arumugam, Jake Summers, Seth H. Cohen, Rolf A. Jansen, Rogier A. Windhorst, Ashish Meena, Adi Zitrin, William C. Keel, Cheng Cheng, Dan Coe, Christopher J. Conselice, Jordan C. J. D’Silva, Simon P. Driver, Brenda Frye, Norman A. Grogin, Anton M. Koekemoer, Madeline A. Marshall, Mario Nonino, Nor Pirzkal, Aaron Robotham, Michael J. Rutkowski, Russell E. Ryan Jr., Scott Tompkins, Christopher N. A. Willmer, Haojing Yan, Thomas J. Broadhurst, José M. Diego, Patrick Kamieneski, Min Yun","doi":"10.3847/1538-4357/acf931","DOIUrl":null,"url":null,"abstract":"Abstract We present a multiwavelength analysis using the Submillimeter Array (SMA), James Clerk Maxwell Telescope, NOEMA, JWST, the Hubble Space Telescope (HST), and the Spitzer Space Telescope of two dusty strongly star-forming galaxies, 850.1 and 850.2, seen through the massive cluster lens A 1489. These SMA-located sources both lie at z = 4.26 and have bright dust continuum emission, but 850.2 is a UV-detected Lyman-break galaxy, while 850.1 is undetected at ≲ 2 μ m, even with deep JWST/NIRCam observations. We investigate their stellar, interstellar medium, and dynamical properties, including a pixel-level spectral energy distribution analysis to derive subkiloparsec-resolution stellar-mass and A V maps. We find that 850.1 is one of the most massive and highly obscured, A V ∼ 5, galaxies known at z > 4 with M * ∼10 11.8 M ⊙ (likely forming at z > 6), and 850.2 is one of the least massive and least obscured, A V ∼ 1, members of the z > 4 dusty star-forming population. The diversity of these two dust-mass-selected galaxies illustrates the incompleteness of galaxy surveys at z ≳ 3–4 based on imaging at ≲ 2 μ m, the longest wavelengths feasible from HST or the ground. The resolved mass map of 850.1 shows a compact stellar-mass distribution, <?CDATA ${R}_{{\\rm{e}}}^{\\mathrm{mass}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msubsup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">e</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>mass</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> ∼1 kpc, but its expected evolution means that it matches both the properties of massive, quiescent galaxies at z ∼ 1.5 and ultramassive early-type galaxies at z ∼ 0. We suggest that 850.1 is the central galaxy of a group in which 850.2 is a satellite that will likely merge in the near future. The stellar morphology of 850.1 shows arms and a linear bar feature that we link to the active dynamical environment it resides within.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acf931","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We present a multiwavelength analysis using the Submillimeter Array (SMA), James Clerk Maxwell Telescope, NOEMA, JWST, the Hubble Space Telescope (HST), and the Spitzer Space Telescope of two dusty strongly star-forming galaxies, 850.1 and 850.2, seen through the massive cluster lens A 1489. These SMA-located sources both lie at z = 4.26 and have bright dust continuum emission, but 850.2 is a UV-detected Lyman-break galaxy, while 850.1 is undetected at ≲ 2 μ m, even with deep JWST/NIRCam observations. We investigate their stellar, interstellar medium, and dynamical properties, including a pixel-level spectral energy distribution analysis to derive subkiloparsec-resolution stellar-mass and A V maps. We find that 850.1 is one of the most massive and highly obscured, A V ∼ 5, galaxies known at z > 4 with M * ∼10 11.8 M ⊙ (likely forming at z > 6), and 850.2 is one of the least massive and least obscured, A V ∼ 1, members of the z > 4 dusty star-forming population. The diversity of these two dust-mass-selected galaxies illustrates the incompleteness of galaxy surveys at z ≳ 3–4 based on imaging at ≲ 2 μ m, the longest wavelengths feasible from HST or the ground. The resolved mass map of 850.1 shows a compact stellar-mass distribution, Remass ∼1 kpc, but its expected evolution means that it matches both the properties of massive, quiescent galaxies at z ∼ 1.5 and ultramassive early-type galaxies at z ∼ 0. We suggest that 850.1 is the central galaxy of a group in which 850.2 is a satellite that will likely merge in the near future. The stellar morphology of 850.1 shows arms and a linear bar feature that we link to the active dynamical environment it resides within.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.