OPUPO: Defending Against Membership Inference Attacks With Order-Preserving and Utility-Preserving Obfuscation

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yaru Liu, Hongcheng Li, Gang Huang, Wei Hua
{"title":"<b>OPUPO</b>: Defending Against Membership Inference Attacks With <b>O</b>rder-<b>P</b>reserving and <b>U</b>tility-<b>P</b>reserving <b>O</b>bfuscation","authors":"Yaru Liu, Hongcheng Li, Gang Huang, Wei Hua","doi":"10.1109/tdsc.2022.3232111","DOIUrl":null,"url":null,"abstract":"In this work, we present OPUPO to protect machine learning classifiers against black-box membership inference attacks by alleviating the prediction difference between training and non-training samples. Specifically, we apply order-preserving and utility-preserving obfuscation to prediction vectors. The order-preserving constraint strictly maintains the order of confidence scores in the prediction vectors, guaranteeing that the model's classification accuracy is not affected. The utility-preserving constraint, on the other hand, enables adaptive distortions to the prediction vectors in order to protect their utility. Moreover, OPUPO is proved to be adversary resistant that even well-informed defense-aware adversaries cannot restore the original prediction vectors to bypass the defense. We evaluate OPUPO on machine learning and deep learning classifiers trained with four popular datasets. Experiments verify that OPUPO can effectively defend against state-of-the-art attack techniques with negligible computation overhead. In specific, the inference accuracy could be reduced from as high as 87.66% to around 50%, i.e., random guess, and the prediction time will increase by only 0.44% on average. The experiments also show that OPUPO could achieve better privacy-utility trade-off than existing defenses.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"33 12","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3232111","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we present OPUPO to protect machine learning classifiers against black-box membership inference attacks by alleviating the prediction difference between training and non-training samples. Specifically, we apply order-preserving and utility-preserving obfuscation to prediction vectors. The order-preserving constraint strictly maintains the order of confidence scores in the prediction vectors, guaranteeing that the model's classification accuracy is not affected. The utility-preserving constraint, on the other hand, enables adaptive distortions to the prediction vectors in order to protect their utility. Moreover, OPUPO is proved to be adversary resistant that even well-informed defense-aware adversaries cannot restore the original prediction vectors to bypass the defense. We evaluate OPUPO on machine learning and deep learning classifiers trained with four popular datasets. Experiments verify that OPUPO can effectively defend against state-of-the-art attack techniques with negligible computation overhead. In specific, the inference accuracy could be reduced from as high as 87.66% to around 50%, i.e., random guess, and the prediction time will increase by only 0.44% on average. The experiments also show that OPUPO could achieve better privacy-utility trade-off than existing defenses.
OPUPO:用保序和保效用混淆防御隶属推理攻击
在这项工作中,我们提出了OPUPO,通过减轻训练样本和非训练样本之间的预测差异来保护机器学习分类器免受黑盒成员推理攻击。具体来说,我们将保序和保效用混淆应用于预测向量。保序约束严格保持预测向量置信度分数的顺序,保证模型的分类精度不受影响。另一方面,效用保持约束允许对预测向量进行自适应扭曲,以保护其效用。此外,OPUPO被证明是抗攻击的,即使是消息灵通的防御意识的对手也无法恢复原始的预测向量来绕过防御。我们在机器学习和深度学习分类器上用四个流行的数据集来评估OPUPO。实验证明,OPUPO可以有效防御最先进的攻击技术,而计算开销可以忽略不计。具体来说,推理准确率可以从高达87.66%降低到50%左右,即随机猜测,预测时间平均只会增加0.44%。实验还表明,OPUPO可以实现比现有防御更好的隐私效用权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信