Design and analysis of a passive knee assisted exoskeleton

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yawen Zhou, Xupeng Wang, Xinyao Tang, Xiaomin Ji, Zhu Gao
{"title":"Design and analysis of a passive knee assisted exoskeleton","authors":"Yawen Zhou, Xupeng Wang, Xinyao Tang, Xiaomin Ji, Zhu Gao","doi":"10.1177/16878132231202578","DOIUrl":null,"url":null,"abstract":"In order to reduce the impact of knee injury and energy consumption during exercise, an unpowered exoskeleton was proposed based on the characteristics of ergonomics and human lower limb gait. The device is assisted by a double spring mechanism and worn parallel to the knee joint. The metabolic energy of the human body is reduced by compensating for the energy loss the lower limbs negative work. At the same time, the elastic energy storage element is simulated and analyzed in ANSYS software, and the corresponding relationship between the size of energy storage unit and strain energy is determined, so as to realize the parameter matching design and application of energy storage unit. Finally, the effectiveness of the exoskeleton is proved by analyzing EMG data and human knee torque data. The experimental results showing that the exoskeleton has a good assistant effect, and can achieve the purpose of daily walking assistance.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"114 2","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231202578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to reduce the impact of knee injury and energy consumption during exercise, an unpowered exoskeleton was proposed based on the characteristics of ergonomics and human lower limb gait. The device is assisted by a double spring mechanism and worn parallel to the knee joint. The metabolic energy of the human body is reduced by compensating for the energy loss the lower limbs negative work. At the same time, the elastic energy storage element is simulated and analyzed in ANSYS software, and the corresponding relationship between the size of energy storage unit and strain energy is determined, so as to realize the parameter matching design and application of energy storage unit. Finally, the effectiveness of the exoskeleton is proved by analyzing EMG data and human knee torque data. The experimental results showing that the exoskeleton has a good assistant effect, and can achieve the purpose of daily walking assistance.
被动式膝关节辅助外骨骼的设计与分析
为了减少运动过程中膝关节损伤的影响和能量消耗,根据人体工程学和人体下肢步态的特点,提出了一种无动力外骨骼。该装置由双弹簧机构辅助,并与膝关节平行佩戴。人体的代谢能量通过补偿下肢负功的能量损失而减少。同时,在ANSYS软件中对弹性储能元件进行仿真分析,确定储能单元尺寸与应变能的对应关系,从而实现储能单元的参数匹配设计与应用。最后,通过对肌电数据和人体膝关节扭矩数据的分析,验证了外骨骼的有效性。实验结果表明,该外骨骼具有良好的辅助效果,可以达到日常辅助行走的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信