An Aluminum-coated sCMOS Sensor for X-Ray Astronomy

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Qinyu Wu, Zhixing Ling, Chen Zhang, Shuang-Nan Zhang, Weimin Yuan
{"title":"An Aluminum-coated sCMOS Sensor for X-Ray Astronomy","authors":"Qinyu Wu, Zhixing Ling, Chen Zhang, Shuang-Nan Zhang, Weimin Yuan","doi":"10.1088/1538-3873/ad03d7","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, tremendous progress has been made on scientific Complementary Metal Oxide Semiconductor (sCMOS) sensors, making them a promising device for future space X-ray missions. We have customized a large-format sCMOS sensor, G1516BI, dedicated for X-ray applications. In this work, a 200 nm thick aluminum layer is successfully sputtered on the surface of this sensor. This Al-coated sensor, named EP4K, shows consistent performance with the uncoated version. The readout noise of the EP4K sensor is around 2.5 e − and the dark current is less than 0.01 e − pixel −1 s −1 at −30°C. The maximum frame rate is 20 Hz in the current design. The ratio of single pixel events of the sensor is 45.0%. The energy resolution can reach 153.2 eV at 4.51 keV and 174.2 eV at 5.90 keV at −30°C. The optical transmittance of the aluminum layer is approximately 10 −8 to 10 −10 for optical lights from 365 to 880 nm, corresponding to an effective aluminum thickness of around 140 to 160 nm. The good X-ray performance and low optical transmittance of this Al-coated sCMOS sensor make it a good choice for space X-ray missions. The Lobster Eye Imager for Astronomy, which has been working in orbit for about one year, is equipped with four EP4K sensors. Furthermore, 48 EP4K sensors are used on the Wide-field X-ray Telescope on the Einstein Probe satellite, which will be launched at the end of 2023.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"310 1-2","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad03d7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In recent years, tremendous progress has been made on scientific Complementary Metal Oxide Semiconductor (sCMOS) sensors, making them a promising device for future space X-ray missions. We have customized a large-format sCMOS sensor, G1516BI, dedicated for X-ray applications. In this work, a 200 nm thick aluminum layer is successfully sputtered on the surface of this sensor. This Al-coated sensor, named EP4K, shows consistent performance with the uncoated version. The readout noise of the EP4K sensor is around 2.5 e − and the dark current is less than 0.01 e − pixel −1 s −1 at −30°C. The maximum frame rate is 20 Hz in the current design. The ratio of single pixel events of the sensor is 45.0%. The energy resolution can reach 153.2 eV at 4.51 keV and 174.2 eV at 5.90 keV at −30°C. The optical transmittance of the aluminum layer is approximately 10 −8 to 10 −10 for optical lights from 365 to 880 nm, corresponding to an effective aluminum thickness of around 140 to 160 nm. The good X-ray performance and low optical transmittance of this Al-coated sCMOS sensor make it a good choice for space X-ray missions. The Lobster Eye Imager for Astronomy, which has been working in orbit for about one year, is equipped with four EP4K sensors. Furthermore, 48 EP4K sensors are used on the Wide-field X-ray Telescope on the Einstein Probe satellite, which will be launched at the end of 2023.
用于x射线天文学的镀铝sCMOS传感器
近年来,科学的互补金属氧化物半导体(sCMOS)传感器取得了巨大的进展,使其成为未来空间x射线任务中很有前途的器件。我们定制了一款专用于x射线应用的大尺寸sCMOS传感器G1516BI。在这项工作中,成功地在传感器表面溅射了一层200 nm厚的铝层。这款名为EP4K的铝涂层传感器与未涂层的传感器表现出一致的性能。在−30℃时,EP4K传感器读出噪声在2.5 e−左右,暗电流小于0.01 e−pixel−1 s−1。当前设计的最大帧率为20hz。传感器的单像素事件率为45.0%。在- 30°C时,能量分辨率可达153.2 eV和174.2 eV,分别为4.51 keV和5.90 keV。对于365 ~ 880 nm的可见光,铝层的透光率约为10−8 ~ 10−10,对应于铝的有效厚度约为140 ~ 160 nm。该镀铝sCMOS传感器具有良好的x射线性能和较低的透光率,是空间x射线任务的理想选择。龙虾眼天文成像仪已经在轨道上工作了大约一年,配备了四个EP4K传感器。此外,将于2023年底发射的“爱因斯坦探测”卫星上的宽视场x射线望远镜上使用了48个EP4K传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信