{"title":"Surface wettability patterning of metal additive manufactured parts via laser-assisted functionalization","authors":"Wuji Huang, Ben Nelson, Hongtao Ding","doi":"10.2351/7.0001143","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) has revolutionized the production of complex geometries with superior properties compared with traditional manufacturing methods. However, the high roughness and poor wettability of as-produced surfaces of AM parts limit their suitability for certain applications. To address this, we present a maskless laser-assisted surface functionalization method to improve the wettability of metal 3D printed parts. This study explores the potential of combining metal AM with surface wettability patterning, a promising technique in fluid-related fields. Large-area AlSi10Mg parts were fabricated using laser powder bed fusion (L-PBF), followed by an innovative laser-assisted functionalization (LAF) method to achieve patterned wetting surfaces. The LAF method consists of laser texturing and chemical modification steps, and two strategies were demonstrated to fabricate different types of wettability patterns. Strategy I helps produce two types of superhydrophobicity, while strategy II helps create a superhydrophobic-superhydrophilic patterned surface. The study demonstrates the simplicity, robustness, and feasibility of the process and analyzes the processing mechanism, surface topography, and surface chemistry. The integration of surface wettability patterning and 3D-printing can optimize components to enhance performance and efficiency by creating intricate fluid flow pathways. Overall, this work highlights the potential of combining metal AM with surface wettability patterning, providing a pathway to produce high-performance parts with tailored wettability properties. This research has significant implications for fluid-related industries such as aerospace, automotive, and energy, as it offers unparalleled design freedom and the ability to create complex geometries.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has revolutionized the production of complex geometries with superior properties compared with traditional manufacturing methods. However, the high roughness and poor wettability of as-produced surfaces of AM parts limit their suitability for certain applications. To address this, we present a maskless laser-assisted surface functionalization method to improve the wettability of metal 3D printed parts. This study explores the potential of combining metal AM with surface wettability patterning, a promising technique in fluid-related fields. Large-area AlSi10Mg parts were fabricated using laser powder bed fusion (L-PBF), followed by an innovative laser-assisted functionalization (LAF) method to achieve patterned wetting surfaces. The LAF method consists of laser texturing and chemical modification steps, and two strategies were demonstrated to fabricate different types of wettability patterns. Strategy I helps produce two types of superhydrophobicity, while strategy II helps create a superhydrophobic-superhydrophilic patterned surface. The study demonstrates the simplicity, robustness, and feasibility of the process and analyzes the processing mechanism, surface topography, and surface chemistry. The integration of surface wettability patterning and 3D-printing can optimize components to enhance performance and efficiency by creating intricate fluid flow pathways. Overall, this work highlights the potential of combining metal AM with surface wettability patterning, providing a pathway to produce high-performance parts with tailored wettability properties. This research has significant implications for fluid-related industries such as aerospace, automotive, and energy, as it offers unparalleled design freedom and the ability to create complex geometries.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.