Alexander Schuster, Raphael Hagmanns, Iman Sonji, Andreas Löcklin, Janko Petereit, Christof Ebert, Michael Weyrich
{"title":"Synthetic data generation for the continuous development and testing of autonomous construction machinery","authors":"Alexander Schuster, Raphael Hagmanns, Iman Sonji, Andreas Löcklin, Janko Petereit, Christof Ebert, Michael Weyrich","doi":"10.1515/auto-2023-0026","DOIUrl":null,"url":null,"abstract":"Abstract The development and testing of autonomous systems require sufficient meaningful data. However, generating suitable scenario data is a challenging task. In particular, it raises the question of how to narrow down what kind of data should be considered meaningful. Autonomous systems are characterized by their ability to cope with uncertain situations, i.e. complex and unknown environmental conditions. Due to this openness, the definition of training and test scenarios cannot be easily specified. Not all relevant influences can be sufficiently specified with requirements in advance, especially for unknown scenarios and corner cases, and therefore the “right” data, balancing quality and efficiency, is hard to generate. This article discusses the challenges of automated generation of 3D scenario data. We present a training and testing loop that provides a way to generate synthetic camera and Lidar data using 3D simulated environments. Those can be automatically varied and modified to support a closed-loop system for deriving and generating datasets that can be used for continuous development and testing of autonomous systems.","PeriodicalId":55437,"journal":{"name":"At-Automatisierungstechnik","volume":"8 3","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"At-Automatisierungstechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/auto-2023-0026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The development and testing of autonomous systems require sufficient meaningful data. However, generating suitable scenario data is a challenging task. In particular, it raises the question of how to narrow down what kind of data should be considered meaningful. Autonomous systems are characterized by their ability to cope with uncertain situations, i.e. complex and unknown environmental conditions. Due to this openness, the definition of training and test scenarios cannot be easily specified. Not all relevant influences can be sufficiently specified with requirements in advance, especially for unknown scenarios and corner cases, and therefore the “right” data, balancing quality and efficiency, is hard to generate. This article discusses the challenges of automated generation of 3D scenario data. We present a training and testing loop that provides a way to generate synthetic camera and Lidar data using 3D simulated environments. Those can be automatically varied and modified to support a closed-loop system for deriving and generating datasets that can be used for continuous development and testing of autonomous systems.
期刊介绍:
Automatisierungstechnik (AUTO) publishes articles covering the entire range of automation technology: development and application of methods, the operating principles, characteristics, and applications of tools and the interrelationships between automation technology and societal developments. The journal includes a tutorial series on "Theory for Users," and a forum for the exchange of viewpoints concerning past, present, and future developments. Automatisierungstechnik is the official organ of GMA (The VDI/VDE Society for Measurement and Automatic Control) and NAMUR (The Process-Industry Interest Group for Automation Technology).
Topics
control engineering
digital measurement systems
cybernetics
robotics
process automation / process engineering
control design
modelling
information processing
man-machine interfaces
networked control systems
complexity management
machine learning
ambient assisted living
automated driving
bio-analysis technology
building automation
factory automation / smart factories
flexible manufacturing systems
functional safety
mechatronic systems.