{"title":"Visualization and characterization of experimental hydraulic fractures interacting with karst fracture-cavity distributions","authors":"Hanzhi Yang, Xin Chang, Chunhe Yang, Wuhao Guo, Lei Wang, Guokai Zhao, Yintong Guo","doi":"10.1016/j.jrmge.2023.08.010","DOIUrl":null,"url":null,"abstract":"Karst fracture-cavity carbonate reservoirs, in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances, have become significant fields of oil and gas exploration and exploitation. Proppant fracturing is considered as the best method for exploiting carbonate reservoirs; however, previous studies primarily focused on the effects of individual types of geological formations, such as natural fractures or cavities, on fracture propagation. In this study, true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples. Subsequently, the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution, cross-sectional morphology of the main propagation path, and three-dimensional visualization of the overall fracture network. It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity. In contrast, a natural fracture with a smaller approach angle (0° and 30°) around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity. In addition, the hydraulic fracture crossed the natural fracture at the 45° approach angle and bypassed the cavity under higher stress difference conditions. A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area (SRA), tortuosity of the hydraulic fractures (T), and connectivity index (CI) of the cavities. These findings provide new insights into the fracturing design of carbonate reservoirs.","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"52 3","pages":"0"},"PeriodicalIF":9.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jrmge.2023.08.010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Karst fracture-cavity carbonate reservoirs, in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances, have become significant fields of oil and gas exploration and exploitation. Proppant fracturing is considered as the best method for exploiting carbonate reservoirs; however, previous studies primarily focused on the effects of individual types of geological formations, such as natural fractures or cavities, on fracture propagation. In this study, true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples. Subsequently, the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution, cross-sectional morphology of the main propagation path, and three-dimensional visualization of the overall fracture network. It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity. In contrast, a natural fracture with a smaller approach angle (0° and 30°) around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity. In addition, the hydraulic fracture crossed the natural fracture at the 45° approach angle and bypassed the cavity under higher stress difference conditions. A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area (SRA), tortuosity of the hydraulic fractures (T), and connectivity index (CI) of the cavities. These findings provide new insights into the fracturing design of carbonate reservoirs.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.