Benjamin Kazenwadel, Simon Becker, Marina Graf, Marcus Geimer
{"title":"Aligning process quality and efficiency in agricultural soil tillage","authors":"Benjamin Kazenwadel, Simon Becker, Marina Graf, Marcus Geimer","doi":"10.1515/auto-2023-0042","DOIUrl":null,"url":null,"abstract":"Abstract Automation in agricultural machinery is a crucial driver of productivity and sustainability. Some automation features like automated steering and real-time data analytics are already state-of-the-art. On the other hand, a human driver performs the optimization of the working speed manually, and the automation of this is an ongoing challenge. Process quality and process efficiency are the two main targets in this optimization. Agricultural soil tillage requires achieving both. Therefore, the correlation between process quality optimization and process efficiency is fundamental, and vice versa. The approach presented in this paper shows how the two optimization targets of efficiency and process quality can be optimized and aligned together. Optical sensors determine various parameters to describe and model the process quality. The measured machine state determines the characteristics of the interaction forces between the machine and the environment. A machine learning algorithm describes the relationships in the drivetrain. The two process targets are each predicted for different working speeds and are combined in the form of a boundary target and an optimization target to identify one optimized target speed value.","PeriodicalId":55437,"journal":{"name":"At-Automatisierungstechnik","volume":"1 3","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"At-Automatisierungstechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/auto-2023-0042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Automation in agricultural machinery is a crucial driver of productivity and sustainability. Some automation features like automated steering and real-time data analytics are already state-of-the-art. On the other hand, a human driver performs the optimization of the working speed manually, and the automation of this is an ongoing challenge. Process quality and process efficiency are the two main targets in this optimization. Agricultural soil tillage requires achieving both. Therefore, the correlation between process quality optimization and process efficiency is fundamental, and vice versa. The approach presented in this paper shows how the two optimization targets of efficiency and process quality can be optimized and aligned together. Optical sensors determine various parameters to describe and model the process quality. The measured machine state determines the characteristics of the interaction forces between the machine and the environment. A machine learning algorithm describes the relationships in the drivetrain. The two process targets are each predicted for different working speeds and are combined in the form of a boundary target and an optimization target to identify one optimized target speed value.
期刊介绍:
Automatisierungstechnik (AUTO) publishes articles covering the entire range of automation technology: development and application of methods, the operating principles, characteristics, and applications of tools and the interrelationships between automation technology and societal developments. The journal includes a tutorial series on "Theory for Users," and a forum for the exchange of viewpoints concerning past, present, and future developments. Automatisierungstechnik is the official organ of GMA (The VDI/VDE Society for Measurement and Automatic Control) and NAMUR (The Process-Industry Interest Group for Automation Technology).
Topics
control engineering
digital measurement systems
cybernetics
robotics
process automation / process engineering
control design
modelling
information processing
man-machine interfaces
networked control systems
complexity management
machine learning
ambient assisted living
automated driving
bio-analysis technology
building automation
factory automation / smart factories
flexible manufacturing systems
functional safety
mechatronic systems.