The Extended Non-Elementary Amplitude Functions as Solutions to the Damped Pendulum Equation, the Van der Pol Equation, the Damped Duffing Equation, the Lienard Equation and the Lorenz Equations

Magne Stensland
{"title":"The Extended Non-Elementary Amplitude Functions as Solutions to the Damped Pendulum Equation, the Van der Pol Equation, the Damped Duffing Equation, the Lienard Equation and the Lorenz Equations","authors":"Magne Stensland","doi":"10.4236/jamp.2023.1111218","DOIUrl":null,"url":null,"abstract":"In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.1111218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.
作为阻尼摆方程、Van der Pol方程、阻尼Duffing方程、Lienard方程和Lorenz方程解的扩展非初等振幅函数
在本文中,我们定义了一些非初等振幅函数,它们给出了一些众所周知的二阶非线性微分方程和洛伦兹方程的解,但不给出混沌情况的解。我们给解一个名字,一个符号,把它们放到一组函数中,放到其他函数的上下文中。这些解等于振幅,或者是非初等积分的上限,可以是任意的。为了定义一些短二阶非线性ode的解,我们将对一般振幅函数进行扩展。唯一的缺点是这些解的一阶导数包含一个在二阶导数处消失的积分。我们还会做第二次扩展:二次积分振幅函数。有了这个扩展,我们有解决方案的ode系统有一个非常奇怪的行为。利用扩展的振幅函数,我们可以定义许多短二阶非线性ode的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信