A guide to the design of the virtual element methods for second- and fourth-order partial differential equations

IF 1.4 4区 工程技术 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yu Leng, Lampros Svolos, Dibyendu Adak, Ismael Boureima, Gianmarco Manzini, Hashem Mourad, Jeeyeon Plohr
{"title":"A guide to the design of the virtual element methods for second- and fourth-order partial differential equations","authors":"Yu Leng, Lampros Svolos, Dibyendu Adak, Ismael Boureima, Gianmarco Manzini, Hashem Mourad, Jeeyeon Plohr","doi":"10.3934/mine.2023100","DOIUrl":null,"url":null,"abstract":"<abstract><p>We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material. The two partial differential equations are: (i) a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation modeling the damage of the material. Inspired by <sup>[<xref ref-type=\"bibr\" rid=\"b1\">1</xref>,<xref ref-type=\"bibr\" rid=\"b2\">2</xref>,<xref ref-type=\"bibr\" rid=\"b3\">3</xref>]</sup>, we develop a new conforming VEM for the discretization of the two equations, which is implementation-friendly, i.e., different terms can be implemented by exploiting a single projection operator. We use $ C^0 $ and $ C^1 $ virtual elements for the second-and fourth-order partial differential equation, respectively. For both equations, we review the formulation of the virtual element approximation and discuss the details pertaining the implementation.</p></abstract>","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mine.2023100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material. The two partial differential equations are: (i) a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation modeling the damage of the material. Inspired by [1,2,3], we develop a new conforming VEM for the discretization of the two equations, which is implementation-friendly, i.e., different terms can be implemented by exploiting a single projection operator. We use $ C^0 $ and $ C^1 $ virtual elements for the second-and fourth-order partial differential equation, respectively. For both equations, we review the formulation of the virtual element approximation and discuss the details pertaining the implementation.

二阶和四阶偏微分方程虚元法的设计指南
我们讨论了弹性材料断裂扩展相场建模中出现的两个偏微分方程数值逼近的两种一致性虚元方法的设计和实现细节。两个偏微分方程是:(i)描述动量平衡的线性双曲方程和(ii)模拟材料损伤的四阶椭圆方程。受<sup>[<xref - ref-type="bibr" rid="b1">1</xref>,<xref -type="bibr" rid="b2">2</xref>,<xref -type="bibr" rid="b3">3</xref>]</sup>的启发,我们开发了一种新的符合VEM,用于两个方程的离散化,该模型易于实现,即利用单个投影算子可以实现不同的项。对于二阶和四阶偏微分方程,我们分别使用C^0和C^1虚元。对于这两个方程,我们回顾了虚元近似的公式,并讨论了有关实现的细节。</ </abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics in Engineering
Mathematics in Engineering MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.20
自引率
0.00%
发文量
64
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信